state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C W✝ X✝ Y✝ Z✝ : Mat_ C f : W✝ ⟶ X✝ g : X✝ ⟶ Y✝ h : Y✝ ⟶ Z✝ ⊢ (f ≫ g) ≫ h = f ≫ g ≫ h
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by
apply DMatrix.ext
instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by
Mathlib.CategoryTheory.Preadditive.Mat.106_0.xG9GKY7NTklnF73
instance : Category.{v₁} (Mat_ C) where Hom
Mathlib_CategoryTheory_Preadditive_Mat
case a C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C W✝ X✝ Y✝ Z✝ : Mat_ C f : W✝ ⟶ X✝ g : X✝ ⟶ Y✝ h : Y✝ ⟶ Z✝ ⊢ ∀ (i : W✝.ι) (j : Z✝.ι), ((f ≫ g) ≫ h) i j = (f ≫ g ≫ h) i j
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext
intros
instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext
Mathlib.CategoryTheory.Preadditive.Mat.106_0.xG9GKY7NTklnF73
instance : Category.{v₁} (Mat_ C) where Hom
Mathlib_CategoryTheory_Preadditive_Mat
case a C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C W✝ X✝ Y✝ Z✝ : Mat_ C f : W✝ ⟶ X✝ g : X✝ ⟶ Y✝ h : Y✝ ⟶ Z✝ i✝ : W✝.ι j✝ : Z✝.ι ⊢ ((f ≫ g) ≫ h) i✝ j✝ = (f ≫ g ≫ h) i✝ j✝
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros
simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc]
instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros
Mathlib.CategoryTheory.Preadditive.Mat.106_0.xG9GKY7NTklnF73
instance : Category.{v₁} (Mat_ C) where Hom
Mathlib_CategoryTheory_Preadditive_Mat
case a C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C W✝ X✝ Y✝ Z✝ : Mat_ C f : W✝ ⟶ X✝ g : X✝ ⟶ Y✝ h : Y✝ ⟶ Z✝ i✝ : W✝.ι j✝ : Z✝.ι ⊢ ∑ x : Y✝.ι, ∑ x_1 : X✝.ι, f i✝ x_1 ≫ g x_1 x ≫ h x j✝ = ∑ x : X✝.ι, ∑ j : Y✝.ι, f i✝ x ≫ g x j ≫ h j j✝
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc]
rw [Finset.sum_comm]
instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc]
Mathlib.CategoryTheory.Preadditive.Mat.106_0.xG9GKY7NTklnF73
instance : Category.{v₁} (Mat_ C) where Hom
Mathlib_CategoryTheory_Preadditive_Mat
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M : Mat_ C i : M.ι ⊢ 𝟙 M i i = 𝟙 (X M i)
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by
simp [id_apply]
@[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by
Mathlib.CategoryTheory.Preadditive.Mat.136_0.xG9GKY7NTklnF73
@[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _
Mathlib_CategoryTheory_Preadditive_Mat
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M : Mat_ C i j : M.ι h : i ≠ j ⊢ 𝟙 M i j = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by
simp [id_apply, h]
@[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by
Mathlib.CategoryTheory.Preadditive.Mat.141_0.xG9GKY7NTklnF73
@[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0
Mathlib_CategoryTheory_Preadditive_Mat
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M N : Mat_ C ⊢ AddCommGroup (M ⟶ N)
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by
change AddCommGroup (DMatrix M.ι N.ι _)
instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by
Mathlib.CategoryTheory.Preadditive.Mat.167_0.xG9GKY7NTklnF73
instance (M N : Mat_ C) : AddCommGroup (M ⟶ N)
Mathlib_CategoryTheory_Preadditive_Mat
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M N : Mat_ C ⊢ AddCommGroup (DMatrix M.ι N.ι fun i j => (fun i j => X M i ⟶ X N j) i j)
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _)
infer_instance
instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _)
Mathlib.CategoryTheory.Preadditive.Mat.167_0.xG9GKY7NTklnF73
instance (M N : Mat_ C) : AddCommGroup (M ⟶ N)
Mathlib_CategoryTheory_Preadditive_Mat
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M N K : Mat_ C f f' : M ⟶ N g : N ⟶ K ⊢ (f + f') ≫ g = f ≫ g + f' ≫ g
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by
ext
instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by
Mathlib.CategoryTheory.Preadditive.Mat.177_0.xG9GKY7NTklnF73
instance : Preadditive (Mat_ C) where add_comp M N K f f' g
Mathlib_CategoryTheory_Preadditive_Mat
case H C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M N K : Mat_ C f f' : M ⟶ N g : N ⟶ K i✝ : M.ι j✝ : K.ι ⊢ ((f + f') ≫ g) i✝ j✝ = (f ≫ g + f' ≫ g) i✝ j✝
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext;
simp [Finset.sum_add_distrib]
instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext;
Mathlib.CategoryTheory.Preadditive.Mat.177_0.xG9GKY7NTklnF73
instance : Preadditive (Mat_ C) where add_comp M N K f f' g
Mathlib_CategoryTheory_Preadditive_Mat
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M N K : Mat_ C f : M ⟶ N g g' : N ⟶ K ⊢ f ≫ (g + g') = f ≫ g + f ≫ g'
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by
ext
instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by
Mathlib.CategoryTheory.Preadditive.Mat.177_0.xG9GKY7NTklnF73
instance : Preadditive (Mat_ C) where add_comp M N K f f' g
Mathlib_CategoryTheory_Preadditive_Mat
case H C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M N K : Mat_ C f : M ⟶ N g g' : N ⟶ K i✝ : M.ι j✝ : K.ι ⊢ (f ≫ (g + g')) i✝ j✝ = (f ≫ g + f ≫ g') i✝ j✝
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext;
simp [Finset.sum_add_distrib]
instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext;
Mathlib.CategoryTheory.Preadditive.Mat.177_0.xG9GKY7NTklnF73
instance : Preadditive (Mat_ C) where add_comp M N K f f' g
Mathlib_CategoryTheory_Preadditive_Mat
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C j : Fin n x : (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd).ι y : (f j).ι ⊢ (fun i j_1 => X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) i ⟶ X (f j) j_1) x y
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by
refine' if h : x.1 = j then _ else 0
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C j : Fin n x : (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd).ι y : (f j).ι h : x.fst = j ⊢ (fun i j_1 => X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) i ⟶ X (f j) j_1) x y
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0
refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C j : Fin n x : (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd).ι y : (f j).ι h : x.fst = j h' : h ▸ x.snd = y ⊢ (fun i j_1 => X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) i ⟶ X (f j) j_1) x y
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0
apply eqToHom
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case p C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C j : Fin n x : (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd).ι y : (f j).ι h : x.fst = j h' : h ▸ x.snd = y ⊢ X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) x = X (f j) y
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom
substs h h'
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case p C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C x : (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd).ι ⊢ X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) x = X (f x.fst) ((_ : x.fst = x.fst) ▸ x.snd)
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h'
rfl
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h'
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C j : Fin n x : (f j).ι y : (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd).ι ⊢ (fun i j_1 => X (f j) i ⟶ X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) j_1) x y
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by
refine' if h : y.1 = j then _ else 0
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C j : Fin n x : (f j).ι y : (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd).ι h : y.fst = j ⊢ (fun i j_1 => X (f j) i ⟶ X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) j_1) x y
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0
refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C j : Fin n x : (f j).ι y : (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd).ι h : y.fst = j h' : h ▸ y.snd = x ⊢ (fun i j_1 => X (f j) i ⟶ X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) j_1) x y
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0
apply eqToHom
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case p C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C j : Fin n x : (f j).ι y : (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd).ι h : y.fst = j h' : h ▸ y.snd = x ⊢ X (f j) x = X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) y
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom
substs h h'
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case p C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C y : (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd).ι ⊢ X (f y.fst) ((_ : y.fst = y.fst) ▸ y.snd) = X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) y
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h'
rfl
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h'
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C j j' : Fin n ⊢ (fun j x y => if h : y.fst = j then if h' : h ▸ y.snd = x then eqToHom (_ : X (f j) x = X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) y) else 0 else 0) j ≫ (fun j x y => if h : x.fst = j then if h' : h ▸ x.snd = y then eqToHom (_ : X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) x = X (f j) y) else 0 else 0) j' = if h : j = j' then eqToHom (_ : f j = f j') else 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by
ext x y
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C j j' : Fin n x : (f j).ι y : (f j').ι ⊢ ((fun j x y => if h : y.fst = j then if h' : h ▸ y.snd = x then eqToHom (_ : X (f j) x = X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) y) else 0 else 0) j ≫ (fun j x y => if h : x.fst = j then if h' : h ▸ x.snd = y then eqToHom (_ : X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) x = X (f j) y) else 0 else 0) j') x y = dite (j = j') (fun h => eqToHom (_ : f j = f j')) (fun h => 0) x y
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y
dsimp
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C j j' : Fin n x : (f j).ι y : (f j').ι ⊢ (∑ j_1 : (j : Fin n) × (f j).ι, (if h : j_1.fst = j then if h' : h ▸ j_1.snd = x then eqToHom (_ : X (f j) x = X (f j_1.fst) j_1.snd) else 0 else 0) ≫ if h : j_1.fst = j' then if h' : h ▸ j_1.snd = y then eqToHom (_ : X (f j_1.fst) j_1.snd = X (f j') y) else 0 else 0) = dite (j = j') (fun h => eqToHom (_ : f j = f j')) (fun h => 0) x y
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp
simp_rw [dite_comp, comp_dite]
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C j j' : Fin n x : (f j).ι y : (f j').ι ⊢ (∑ x_1 : (j : Fin n) × (f j).ι, if h : x_1.fst = j then if h_1 : (_ : x_1.fst = j) ▸ x_1.snd = x then if h_2 : x_1.fst = j' then if h_3 : (_ : x_1.fst = j') ▸ x_1.snd = y then eqToHom (_ : X (f j) x = X (f x_1.fst) x_1.snd) ≫ eqToHom (_ : X (f x_1.fst) x_1.snd = X (f j') y) else eqToHom (_ : X (f j) x = X (f x_1.fst) x_1.snd) ≫ 0 else eqToHom (_ : X (f j) x = X (f x_1.fst) x_1.snd) ≫ 0 else if h : x_1.fst = j' then if h_2 : (_ : x_1.fst = j') ▸ x_1.snd = y then 0 ≫ eqToHom (_ : X (f x_1.fst) x_1.snd = X (f j') y) else 0 ≫ 0 else 0 ≫ 0 else if h : x_1.fst = j' then if h_1 : (_ : x_1.fst = j') ▸ x_1.snd = y then 0 ≫ eqToHom (_ : X (f x_1.fst) x_1.snd = X (f j') y) else 0 ≫ 0 else 0 ≫ 0) = dite (j = j') (fun h => eqToHom (_ : f j = f j')) (fun h => 0) x y
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite]
simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr]
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite]
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C j j' : Fin n x : (f j).ι y : (f j').ι ⊢ (∑ x_1 : (j : Fin n) × (f j).ι, if h : x_1.fst = j then if h_1 : (_ : x_1.fst = j) ▸ x_1.snd = x then if h_2 : x_1.fst = j' then if h_3 : (_ : x_1.fst = j') ▸ x_1.snd = y then eqToHom (_ : X (f j) x = X (f j') y) else 0 else 0 else 0 else 0) = dite (j = j') (fun h => eqToHom (_ : f j = f j')) (fun h => 0) x y
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr]
erw [Finset.sum_sigma]
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr]
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C j j' : Fin n x : (f j).ι y : (f j').ι ⊢ (∑ a : Fin n, ∑ s in (fun x => Finset.univ) a, if h : { fst := a, snd := s }.fst = j then if h_1 : (_ : { fst := a, snd := s }.fst = j) ▸ { fst := a, snd := s }.snd = x then if h_2 : { fst := a, snd := s }.fst = j' then if h_3 : (_ : { fst := a, snd := s }.fst = j') ▸ { fst := a, snd := s }.snd = y then eqToHom (_ : X (f j) x = X (f j') y) else 0 else 0 else 0 else 0) = dite (j = j') (fun h => eqToHom (_ : f j = f j')) (fun h => 0) x y
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma]
dsimp
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma]
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C j j' : Fin n x : (f j).ι y : (f j').ι ⊢ (∑ a : Fin n, ∑ s : (f a).ι, if h : a = j then if h_1 : (_ : a = j) ▸ s = x then if h_2 : a = j' then if h_3 : (_ : a = j') ▸ s = y then eqToHom (_ : X (f j) x = X (f j') y) else 0 else 0 else 0 else 0) = dite (j = j') (fun h => eqToHom (_ : f j = f j')) (fun h => 0) x y
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp
simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq']
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C j j' : Fin n x : (f j).ι y : (f j').ι ⊢ (if h : j = j' then if h_1 : (_ : j = j') ▸ x = y then eqToHom (_ : X (f j) x = X (f j') y) else 0 else 0) = dite (j = j') (fun h => eqToHom (_ : f j = f j')) (fun h => 0) x y
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq']
split_ifs with h h'
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq']
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case pos C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C j j' : Fin n x : (f j).ι y : (f j').ι h : j = j' h' : (_ : j = j') ▸ x = y ⊢ eqToHom (_ : X (f j) x = X (f j') y) = eqToHom (_ : f j = f j') x y
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' ·
substs h h'
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' ·
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case pos C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C j : Fin n x : (f j).ι ⊢ eqToHom (_ : X (f j) x = X (f j) ((_ : j = j) ▸ x)) = eqToHom (_ : f j = f j) x ((_ : j = j) ▸ x)
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h'
simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self]
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h'
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case neg C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C j j' : Fin n x : (f j).ι y : (f j').ι h : j = j' h' : ¬(_ : j = j') ▸ x = y ⊢ 0 = eqToHom (_ : f j = f j') x y
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] ·
subst h
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] ·
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case neg C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C j : Fin n x y : (f j).ι h' : ¬(_ : j = j) ▸ x = y ⊢ 0 = eqToHom (_ : f j = f j) x y
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h
rw [eqToHom_refl, id_apply_of_ne _ _ _ h']
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case neg C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C j j' : Fin n x : (f j).ι y : (f j').ι h : ¬j = j' ⊢ 0 = OfNat.ofNat 0 x y
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] ·
rfl
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] ·
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C ⊢ ∑ j : Fin n, Bicone.π (Bicone.mk (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) (fun j x y => if h : x.fst = j then if h' : h ▸ x.snd = y then eqToHom (_ : X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) x = X (f j) y) else 0 else 0) fun j x y => if h : y.fst = j then if h' : h ▸ y.snd = x then eqToHom (_ : X (f j) x = X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) y) else 0 else 0) j ≫ Bicone.ι (Bicone.mk (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) (fun j x y => if h : x.fst = j then if h' : h ▸ x.snd = y then eqToHom (_ : X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) x = X (f j) y) else 0 else 0) fun j x y => if h : y.fst = j then if h' : h ▸ y.snd = x then eqToHom (_ : X (f j) x = X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) y) else 0 else 0) j = 𝟙 (Bicone.mk (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) (fun j x y => if h : x.fst = j then if h' : h ▸ x.snd = y then eqToHom (_ : X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) x = X (f j) y) else 0 else 0) fun j x y => if h : y.fst = j then if h' : h ▸ y.snd = x then eqToHom (_ : X (f j) x = X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) y) else 0 else 0).pt
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by
dsimp
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C ⊢ (∑ j : Fin n, (fun x y => if h : x.fst = j then if h' : h ▸ x.snd = y then eqToHom (_ : X (f x.fst) x.snd = X (f j) y) else 0 else 0) ≫ fun x y => if h : y.fst = j then if h' : h ▸ y.snd = x then eqToHom (_ : X (f j) x = X (f y.fst) y.snd) else 0 else 0) = 𝟙 (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd)
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp
ext1 ⟨i, j⟩
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι ⊢ ∀ (j_1 : (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd).ι), Finset.sum Finset.univ (fun j => (fun x y => if h : x.fst = j then if h' : h ▸ x.snd = y then eqToHom (_ : X (f x.fst) x.snd = X (f j) y) else 0 else 0) ≫ fun x y => if h : y.fst = j then if h' : h ▸ y.snd = x then eqToHom (_ : X (f j) x = X (f y.fst) y.snd) else 0 else 0) { fst := i, snd := j } j_1 = 𝟙 (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i, snd := j } j_1
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩
rintro ⟨i', j'⟩
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk.mk C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι ⊢ Finset.sum Finset.univ (fun j => (fun x y => if h : x.fst = j then if h' : h ▸ x.snd = y then eqToHom (_ : X (f x.fst) x.snd = X (f j) y) else 0 else 0) ≫ fun x y => if h : y.fst = j then if h' : h ▸ y.snd = x then eqToHom (_ : X (f j) x = X (f y.fst) y.snd) else 0 else 0) { fst := i, snd := j } { fst := i', snd := j' } = 𝟙 (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i, snd := j } { fst := i', snd := j' }
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩
rw [Finset.sum_apply, Finset.sum_apply]
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk.mk C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι ⊢ ∑ c : Fin n, ((fun x y => if h : x.fst = c then if h' : h ▸ x.snd = y then eqToHom (_ : X (f x.fst) x.snd = X (f c) y) else 0 else 0) ≫ fun x y => if h : y.fst = c then if h' : h ▸ y.snd = x then eqToHom (_ : X (f c) x = X (f y.fst) y.snd) else 0 else 0) { fst := i, snd := j } { fst := i', snd := j' } = 𝟙 (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i, snd := j } { fst := i', snd := j' }
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply]
dsimp
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply]
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk.mk C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι ⊢ (∑ c : Fin n, ∑ j_1 : (f c).ι, (if h : i = c then if h' : h ▸ j = j_1 then eqToHom (_ : X (f i) j = X (f c) j_1) else 0 else 0) ≫ if h : i' = c then if h' : h ▸ j' = j_1 then eqToHom (_ : X (f c) j_1 = X (f i') j') else 0 else 0) = 𝟙 (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i, snd := j } { fst := i', snd := j' }
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp
rw [Finset.sum_eq_single i]
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk.mk C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι ⊢ (∑ j_1 : (f i).ι, (if h : i = i then if h' : h ▸ j = j_1 then eqToHom (_ : X (f i) j = X (f i) j_1) else 0 else 0) ≫ if h : i' = i then if h' : h ▸ j' = j_1 then eqToHom (_ : X (f i) j_1 = X (f i') j') else 0 else 0) = 𝟙 (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i, snd := j } { fst := i', snd := j' } case H.mk.mk.h₀ C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι ⊢ ∀ b ∈ Finset.univ, b ≠ i → (∑ j_1 : (f b).ι, (if h : i = b then if h' : h ▸ j = j_1 then eqToHom (_ : X (f i) j = X (f b) j_1) else 0 else 0) ≫ if h : i' = b then if h' : h ▸ j' = j_1 then eqToHom (_ : X (f b) j_1 = X (f i') j') else 0 else 0) = 0 case H.mk.mk.h₁ C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι ⊢ i ∉ Finset.univ → (∑ j_1 : (f i).ι, (if h : i = i then if h' : h ▸ j = j_1 then eqToHom (_ : X (f i) j = X (f i) j_1) else 0 else 0) ≫ if h : i' = i then if h' : h ▸ j' = j_1 then eqToHom (_ : X (f i) j_1 = X (f i') j') else 0 else 0) = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i];
rotate_left
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i];
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk.mk.h₀ C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι ⊢ ∀ b ∈ Finset.univ, b ≠ i → (∑ j_1 : (f b).ι, (if h : i = b then if h' : h ▸ j = j_1 then eqToHom (_ : X (f i) j = X (f b) j_1) else 0 else 0) ≫ if h : i' = b then if h' : h ▸ j' = j_1 then eqToHom (_ : X (f b) j_1 = X (f i') j') else 0 else 0) = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left ·
intro b _ hb
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left ·
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk.mk.h₀ C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι b : Fin n a✝ : b ∈ Finset.univ hb : b ≠ i ⊢ (∑ j_1 : (f b).ι, (if h : i = b then if h' : h ▸ j = j_1 then eqToHom (_ : X (f i) j = X (f b) j_1) else 0 else 0) ≫ if h : i' = b then if h' : h ▸ j' = j_1 then eqToHom (_ : X (f b) j_1 = X (f i') j') else 0 else 0) = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb
apply Finset.sum_eq_zero
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk.mk.h₀.h C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι b : Fin n a✝ : b ∈ Finset.univ hb : b ≠ i ⊢ ∀ x ∈ Finset.univ, ((if h : i = b then if h' : h ▸ j = x then eqToHom (_ : X (f i) j = X (f b) x) else 0 else 0) ≫ if h : i' = b then if h' : h ▸ j' = x then eqToHom (_ : X (f b) x = X (f i') j') else 0 else 0) = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero
intro x _
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk.mk.h₀.h C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι b : Fin n a✝¹ : b ∈ Finset.univ hb : b ≠ i x : (f b).ι a✝ : x ∈ Finset.univ ⊢ ((if h : i = b then if h' : h ▸ j = x then eqToHom (_ : X (f i) j = X (f b) x) else 0 else 0) ≫ if h : i' = b then if h' : h ▸ j' = x then eqToHom (_ : X (f b) x = X (f i') j') else 0 else 0) = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _
rw [dif_neg hb.symm, zero_comp]
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk.mk.h₁ C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι ⊢ i ∉ Finset.univ → (∑ j_1 : (f i).ι, (if h : i = i then if h' : h ▸ j = j_1 then eqToHom (_ : X (f i) j = X (f i) j_1) else 0 else 0) ≫ if h : i' = i then if h' : h ▸ j' = j_1 then eqToHom (_ : X (f i) j_1 = X (f i') j') else 0 else 0) = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] ·
intro hi
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] ·
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk.mk.h₁ C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι hi : i ∉ Finset.univ ⊢ (∑ j_1 : (f i).ι, (if h : i = i then if h' : h ▸ j = j_1 then eqToHom (_ : X (f i) j = X (f i) j_1) else 0 else 0) ≫ if h : i' = i then if h' : h ▸ j' = j_1 then eqToHom (_ : X (f i) j_1 = X (f i') j') else 0 else 0) = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi
simp at hi
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk.mk C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι ⊢ (∑ j_1 : (f i).ι, (if h : i = i then if h' : h ▸ j = j_1 then eqToHom (_ : X (f i) j = X (f i) j_1) else 0 else 0) ≫ if h : i' = i then if h' : h ▸ j' = j_1 then eqToHom (_ : X (f i) j_1 = X (f i') j') else 0 else 0) = 𝟙 (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i, snd := j } { fst := i', snd := j' }
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi
rw [Finset.sum_eq_single j]
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk.mk C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι ⊢ ((if h : i = i then if h' : h ▸ j = j then eqToHom (_ : X (f i) j = X (f i) j) else 0 else 0) ≫ if h : i' = i then if h' : h ▸ j' = j then eqToHom (_ : X (f i) j = X (f i') j') else 0 else 0) = 𝟙 (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i, snd := j } { fst := i', snd := j' } case H.mk.mk.h₀ C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι ⊢ ∀ b ∈ Finset.univ, b ≠ j → ((if h : i = i then if h' : h ▸ j = b then eqToHom (_ : X (f i) j = X (f i) b) else 0 else 0) ≫ if h : i' = i then if h' : h ▸ j' = b then eqToHom (_ : X (f i) b = X (f i') j') else 0 else 0) = 0 case H.mk.mk.h₁ C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι ⊢ j ∉ Finset.univ → ((if h : i = i then if h' : h ▸ j = j then eqToHom (_ : X (f i) j = X (f i) j) else 0 else 0) ≫ if h : i' = i then if h' : h ▸ j' = j then eqToHom (_ : X (f i) j = X (f i') j') else 0 else 0) = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j];
rotate_left
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j];
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk.mk.h₀ C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι ⊢ ∀ b ∈ Finset.univ, b ≠ j → ((if h : i = i then if h' : h ▸ j = b then eqToHom (_ : X (f i) j = X (f i) b) else 0 else 0) ≫ if h : i' = i then if h' : h ▸ j' = b then eqToHom (_ : X (f i) b = X (f i') j') else 0 else 0) = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left ·
intro b _ hb
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left ·
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk.mk.h₀ C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι b : (f i).ι a✝ : b ∈ Finset.univ hb : b ≠ j ⊢ ((if h : i = i then if h' : h ▸ j = b then eqToHom (_ : X (f i) j = X (f i) b) else 0 else 0) ≫ if h : i' = i then if h' : h ▸ j' = b then eqToHom (_ : X (f i) b = X (f i') j') else 0 else 0) = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb
rw [dif_pos rfl, dif_neg, zero_comp]
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk.mk.h₀.hnc C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι b : (f i).ι a✝ : b ∈ Finset.univ hb : b ≠ j ⊢ ¬(_ : i = i) ▸ j = b
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp]
simp only
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp]
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk.mk.h₀.hnc C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι b : (f i).ι a✝ : b ∈ Finset.univ hb : b ≠ j ⊢ ¬j = b
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only
tauto
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk.mk.h₁ C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι ⊢ j ∉ Finset.univ → ((if h : i = i then if h' : h ▸ j = j then eqToHom (_ : X (f i) j = X (f i) j) else 0 else 0) ≫ if h : i' = i then if h' : h ▸ j' = j then eqToHom (_ : X (f i) j = X (f i') j') else 0 else 0) = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto ·
intro hj
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto ·
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk.mk.h₁ C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι hj : j ∉ Finset.univ ⊢ ((if h : i = i then if h' : h ▸ j = j then eqToHom (_ : X (f i) j = X (f i) j) else 0 else 0) ≫ if h : i' = i then if h' : h ▸ j' = j then eqToHom (_ : X (f i) j = X (f i') j') else 0 else 0) = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj
simp at hj
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk.mk C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι ⊢ ((if h : i = i then if h' : h ▸ j = j then eqToHom (_ : X (f i) j = X (f i) j) else 0 else 0) ≫ if h : i' = i then if h' : h ▸ j' = j then eqToHom (_ : X (f i) j = X (f i') j') else 0 else 0) = 𝟙 (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i, snd := j } { fst := i', snd := j' }
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj
simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def]
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk.mk C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι ⊢ (if h : i' = i then if h' : h ▸ j' = j then eqToHom (_ : X (f i) j = X (f i') j') else 0 else 0) = if h : i = i' ∧ HEq j j' then eqToHom (_ : X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i, snd := j } = X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i', snd := j' }) else 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def]
by_cases h : i' = i
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def]
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case pos C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι h : i' = i ⊢ (if h : i' = i then if h' : h ▸ j' = j then eqToHom (_ : X (f i) j = X (f i') j') else 0 else 0) = if h : i = i' ∧ HEq j j' then eqToHom (_ : X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i, snd := j } = X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i', snd := j' }) else 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i ·
subst h
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i ·
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case pos C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i' : Fin n j' j : (f i').ι ⊢ (if h : i' = i' then if h' : h ▸ j' = j then eqToHom (_ : X (f i') j = X (f i') j') else 0 else 0) = if h : i' = i' ∧ HEq j j' then eqToHom (_ : X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i', snd := j } = X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i', snd := j' }) else 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h
rw [dif_pos rfl]
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case pos C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i' : Fin n j' j : (f i').ι ⊢ (if h' : (_ : i' = i') ▸ j' = j then eqToHom (_ : X (f i') j = X (f i') j') else 0) = if h : i' = i' ∧ HEq j j' then eqToHom (_ : X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i', snd := j } = X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i', snd := j' }) else 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl]
simp only [heq_eq_eq, true_and]
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl]
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case pos C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i' : Fin n j' j : (f i').ι ⊢ (if h' : j' = j then eqToHom (_ : X (f i') j = X (f i') j') else 0) = if h : j = j' then eqToHom (_ : X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i', snd := j } = X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i', snd := j' }) else 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and]
by_cases h : j' = j
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and]
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case pos C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i' : Fin n j' j : (f i').ι h : j' = j ⊢ (if h' : j' = j then eqToHom (_ : X (f i') j = X (f i') j') else 0) = if h : j = j' then eqToHom (_ : X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i', snd := j } = X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i', snd := j' }) else 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j ·
subst h
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j ·
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case pos C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i' : Fin n j' : (f i').ι ⊢ (if h' : j' = j' then eqToHom (_ : X (f i') j' = X (f i') j') else 0) = if h : j' = j' then eqToHom (_ : X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i', snd := j' } = X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i', snd := j' }) else 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h
simp
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case neg C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i' : Fin n j' j : (f i').ι h : ¬j' = j ⊢ (if h' : j' = j then eqToHom (_ : X (f i') j = X (f i') j') else 0) = if h : j = j' then eqToHom (_ : X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i', snd := j } = X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i', snd := j' }) else 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp ·
rw [dif_neg h, dif_neg (Ne.symm h)]
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp ·
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case neg C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι h : ¬i' = i ⊢ (if h : i' = i then if h' : h ▸ j' = j then eqToHom (_ : X (f i) j = X (f i') j') else 0 else 0) = if h : i = i' ∧ HEq j j' then eqToHom (_ : X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i, snd := j } = X (mk ((j : Fin n) × (f j).ι) fun p => X (f p.fst) p.snd) { fst := i', snd := j' }) else 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] ·
rw [dif_neg h, dif_neg]
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] ·
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
case neg.hnc C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C n : ℕ f : Fin n → Mat_ C i : Fin n j : (f i).ι i' : Fin n j' : (f i').ι h : ¬i' = i ⊢ ¬(i = i' ∧ HEq j j')
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg]
tauto
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg]
Mathlib.CategoryTheory.Preadditive.Mat.183_0.xG9GKY7NTklnF73
/-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n
Mathlib_CategoryTheory_Preadditive_Mat
C : Type u₁ inst✝³ : Category.{v₁, u₁} C inst✝² : Preadditive C D : Type u_1 inst✝¹ : Category.{v₁, u_1} D inst✝ : Preadditive D M : Mat_ C ⊢ (mapMat_ (𝟭 C)).obj M = (𝟭 (Mat_ C)).obj M
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by
cases M
/-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by
Mathlib.CategoryTheory.Preadditive.Mat.276_0.xG9GKY7NTklnF73
/-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C)
Mathlib_CategoryTheory_Preadditive_Mat
case mk C : Type u₁ inst✝³ : Category.{v₁, u₁} C inst✝² : Preadditive C D : Type u_1 inst✝¹ : Category.{v₁, u_1} D inst✝ : Preadditive D ι✝ : Type fintype✝ : Fintype ι✝ X✝ : ι✝ → C ⊢ (mapMat_ (𝟭 C)).obj (Mat_.mk ι✝ X✝) = (𝟭 (Mat_ C)).obj (Mat_.mk ι✝ X✝)
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M;
rfl
/-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M;
Mathlib.CategoryTheory.Preadditive.Mat.276_0.xG9GKY7NTklnF73
/-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C)
Mathlib_CategoryTheory_Preadditive_Mat
C : Type u₁ inst✝³ : Category.{v₁, u₁} C inst✝² : Preadditive C D : Type u_1 inst✝¹ : Category.{v₁, u_1} D inst✝ : Preadditive D M N : Mat_ C f : M ⟶ N ⊢ (mapMat_ (𝟭 C)).map f ≫ ((fun M => eqToIso (_ : (mapMat_ (𝟭 C)).obj M = (𝟭 (Mat_ C)).obj M)) N).hom = ((fun M => eqToIso (_ : (mapMat_ (𝟭 C)).obj M = (𝟭 (Mat_ C)).obj M)) M).hom ≫ (𝟭 (Mat_ C)).map f
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by
ext
/-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by
Mathlib.CategoryTheory.Preadditive.Mat.276_0.xG9GKY7NTklnF73
/-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C)
Mathlib_CategoryTheory_Preadditive_Mat
case H C : Type u₁ inst✝³ : Category.{v₁, u₁} C inst✝² : Preadditive C D : Type u_1 inst✝¹ : Category.{v₁, u_1} D inst✝ : Preadditive D M N : Mat_ C f : M ⟶ N i✝ : ((mapMat_ (𝟭 C)).obj M).ι j✝ : ((𝟭 (Mat_ C)).obj N).ι ⊢ ((mapMat_ (𝟭 C)).map f ≫ ((fun M => eqToIso (_ : (mapMat_ (𝟭 C)).obj M = (𝟭 (Mat_ C)).obj M)) N).hom) i✝ j✝ = (((fun M => eqToIso (_ : (mapMat_ (𝟭 C)).obj M = (𝟭 (Mat_ C)).obj M)) M).hom ≫ (𝟭 (Mat_ C)).map f) i✝ j✝
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext
cases M
/-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext
Mathlib.CategoryTheory.Preadditive.Mat.276_0.xG9GKY7NTklnF73
/-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C)
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk C : Type u₁ inst✝³ : Category.{v₁, u₁} C inst✝² : Preadditive C D : Type u_1 inst✝¹ : Category.{v₁, u_1} D inst✝ : Preadditive D N : Mat_ C j✝ : ((𝟭 (Mat_ C)).obj N).ι ι✝ : Type fintype✝ : Fintype ι✝ X✝ : ι✝ → C f : Mat_.mk ι✝ X✝ ⟶ N i✝ : ((mapMat_ (𝟭 C)).obj (Mat_.mk ι✝ X✝)).ι ⊢ ((mapMat_ (𝟭 C)).map f ≫ ((fun M => eqToIso (_ : (mapMat_ (𝟭 C)).obj M = (𝟭 (Mat_ C)).obj M)) N).hom) i✝ j✝ = (((fun M => eqToIso (_ : (mapMat_ (𝟭 C)).obj M = (𝟭 (Mat_ C)).obj M)) (Mat_.mk ι✝ X✝)).hom ≫ (𝟭 (Mat_ C)).map f) i✝ j✝
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M;
cases N
/-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M;
Mathlib.CategoryTheory.Preadditive.Mat.276_0.xG9GKY7NTklnF73
/-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C)
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk.mk C : Type u₁ inst✝³ : Category.{v₁, u₁} C inst✝² : Preadditive C D : Type u_1 inst✝¹ : Category.{v₁, u_1} D inst✝ : Preadditive D ι✝¹ : Type fintype✝¹ : Fintype ι✝¹ X✝¹ : ι✝¹ → C i✝ : ((mapMat_ (𝟭 C)).obj (Mat_.mk ι✝¹ X✝¹)).ι ι✝ : Type fintype✝ : Fintype ι✝ X✝ : ι✝ → C j✝ : ((𝟭 (Mat_ C)).obj (Mat_.mk ι✝ X✝)).ι f : Mat_.mk ι✝¹ X✝¹ ⟶ Mat_.mk ι✝ X✝ ⊢ ((mapMat_ (𝟭 C)).map f ≫ ((fun M => eqToIso (_ : (mapMat_ (𝟭 C)).obj M = (𝟭 (Mat_ C)).obj M)) (Mat_.mk ι✝ X✝)).hom) i✝ j✝ = (((fun M => eqToIso (_ : (mapMat_ (𝟭 C)).obj M = (𝟭 (Mat_ C)).obj M)) (Mat_.mk ι✝¹ X✝¹)).hom ≫ (𝟭 (Mat_ C)).map f) i✝ j✝
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N
simp [comp_dite, dite_comp]
/-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N
Mathlib.CategoryTheory.Preadditive.Mat.276_0.xG9GKY7NTklnF73
/-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C)
Mathlib_CategoryTheory_Preadditive_Mat
C : Type u₁ inst✝⁷ : Category.{v₁, u₁} C inst✝⁶ : Preadditive C D : Type u_1 inst✝⁵ : Category.{v₁, u_1} D inst✝⁴ : Preadditive D E : Type u_2 inst✝³ : Category.{v₁, u_2} E inst✝² : Preadditive E F : C ⥤ D inst✝¹ : Additive F G : D ⥤ E inst✝ : Additive G M : Mat_ C ⊢ (mapMat_ (F ⋙ G)).obj M = (mapMat_ F ⋙ mapMat_ G).obj M
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by
cases M
/-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by
Mathlib.CategoryTheory.Preadditive.Mat.287_0.xG9GKY7NTklnF73
/-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_
Mathlib_CategoryTheory_Preadditive_Mat
case mk C : Type u₁ inst✝⁷ : Category.{v₁, u₁} C inst✝⁶ : Preadditive C D : Type u_1 inst✝⁵ : Category.{v₁, u_1} D inst✝⁴ : Preadditive D E : Type u_2 inst✝³ : Category.{v₁, u_2} E inst✝² : Preadditive E F : C ⥤ D inst✝¹ : Additive F G : D ⥤ E inst✝ : Additive G ι✝ : Type fintype✝ : Fintype ι✝ X✝ : ι✝ → C ⊢ (mapMat_ (F ⋙ G)).obj (Mat_.mk ι✝ X✝) = (mapMat_ F ⋙ mapMat_ G).obj (Mat_.mk ι✝ X✝)
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M;
rfl
/-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M;
Mathlib.CategoryTheory.Preadditive.Mat.287_0.xG9GKY7NTklnF73
/-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_
Mathlib_CategoryTheory_Preadditive_Mat
C : Type u₁ inst✝⁷ : Category.{v₁, u₁} C inst✝⁶ : Preadditive C D : Type u_1 inst✝⁵ : Category.{v₁, u_1} D inst✝⁴ : Preadditive D E : Type u_2 inst✝³ : Category.{v₁, u_2} E inst✝² : Preadditive E F : C ⥤ D inst✝¹ : Additive F G : D ⥤ E inst✝ : Additive G M N : Mat_ C f : M ⟶ N ⊢ (mapMat_ (F ⋙ G)).map f ≫ ((fun M => eqToIso (_ : (mapMat_ (F ⋙ G)).obj M = (mapMat_ F ⋙ mapMat_ G).obj M)) N).hom = ((fun M => eqToIso (_ : (mapMat_ (F ⋙ G)).obj M = (mapMat_ F ⋙ mapMat_ G).obj M)) M).hom ≫ (mapMat_ F ⋙ mapMat_ G).map f
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by
ext
/-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by
Mathlib.CategoryTheory.Preadditive.Mat.287_0.xG9GKY7NTklnF73
/-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_
Mathlib_CategoryTheory_Preadditive_Mat
case H C : Type u₁ inst✝⁷ : Category.{v₁, u₁} C inst✝⁶ : Preadditive C D : Type u_1 inst✝⁵ : Category.{v₁, u_1} D inst✝⁴ : Preadditive D E : Type u_2 inst✝³ : Category.{v₁, u_2} E inst✝² : Preadditive E F : C ⥤ D inst✝¹ : Additive F G : D ⥤ E inst✝ : Additive G M N : Mat_ C f : M ⟶ N i✝ : ((mapMat_ (F ⋙ G)).obj M).ι j✝ : ((mapMat_ F ⋙ mapMat_ G).obj N).ι ⊢ ((mapMat_ (F ⋙ G)).map f ≫ ((fun M => eqToIso (_ : (mapMat_ (F ⋙ G)).obj M = (mapMat_ F ⋙ mapMat_ G).obj M)) N).hom) i✝ j✝ = (((fun M => eqToIso (_ : (mapMat_ (F ⋙ G)).obj M = (mapMat_ F ⋙ mapMat_ G).obj M)) M).hom ≫ (mapMat_ F ⋙ mapMat_ G).map f) i✝ j✝
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext
cases M
/-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext
Mathlib.CategoryTheory.Preadditive.Mat.287_0.xG9GKY7NTklnF73
/-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk C : Type u₁ inst✝⁷ : Category.{v₁, u₁} C inst✝⁶ : Preadditive C D : Type u_1 inst✝⁵ : Category.{v₁, u_1} D inst✝⁴ : Preadditive D E : Type u_2 inst✝³ : Category.{v₁, u_2} E inst✝² : Preadditive E F : C ⥤ D inst✝¹ : Additive F G : D ⥤ E inst✝ : Additive G N : Mat_ C j✝ : ((mapMat_ F ⋙ mapMat_ G).obj N).ι ι✝ : Type fintype✝ : Fintype ι✝ X✝ : ι✝ → C f : Mat_.mk ι✝ X✝ ⟶ N i✝ : ((mapMat_ (F ⋙ G)).obj (Mat_.mk ι✝ X✝)).ι ⊢ ((mapMat_ (F ⋙ G)).map f ≫ ((fun M => eqToIso (_ : (mapMat_ (F ⋙ G)).obj M = (mapMat_ F ⋙ mapMat_ G).obj M)) N).hom) i✝ j✝ = (((fun M => eqToIso (_ : (mapMat_ (F ⋙ G)).obj M = (mapMat_ F ⋙ mapMat_ G).obj M)) (Mat_.mk ι✝ X✝)).hom ≫ (mapMat_ F ⋙ mapMat_ G).map f) i✝ j✝
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M;
cases N
/-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M;
Mathlib.CategoryTheory.Preadditive.Mat.287_0.xG9GKY7NTklnF73
/-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_
Mathlib_CategoryTheory_Preadditive_Mat
case H.mk.mk C : Type u₁ inst✝⁷ : Category.{v₁, u₁} C inst✝⁶ : Preadditive C D : Type u_1 inst✝⁵ : Category.{v₁, u_1} D inst✝⁴ : Preadditive D E : Type u_2 inst✝³ : Category.{v₁, u_2} E inst✝² : Preadditive E F : C ⥤ D inst✝¹ : Additive F G : D ⥤ E inst✝ : Additive G ι✝¹ : Type fintype✝¹ : Fintype ι✝¹ X✝¹ : ι✝¹ → C i✝ : ((mapMat_ (F ⋙ G)).obj (Mat_.mk ι✝¹ X✝¹)).ι ι✝ : Type fintype✝ : Fintype ι✝ X✝ : ι✝ → C j✝ : ((mapMat_ F ⋙ mapMat_ G).obj (Mat_.mk ι✝ X✝)).ι f : Mat_.mk ι✝¹ X✝¹ ⟶ Mat_.mk ι✝ X✝ ⊢ ((mapMat_ (F ⋙ G)).map f ≫ ((fun M => eqToIso (_ : (mapMat_ (F ⋙ G)).obj M = (mapMat_ F ⋙ mapMat_ G).obj M)) (Mat_.mk ι✝ X✝)).hom) i✝ j✝ = (((fun M => eqToIso (_ : (mapMat_ (F ⋙ G)).obj M = (mapMat_ F ⋙ mapMat_ G).obj M)) (Mat_.mk ι✝¹ X✝¹)).hom ≫ (mapMat_ F ⋙ mapMat_ G).map f) i✝ j✝
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N
simp [comp_dite, dite_comp]
/-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N
Mathlib.CategoryTheory.Preadditive.Mat.287_0.xG9GKY7NTklnF73
/-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_
Mathlib_CategoryTheory_Preadditive_Mat
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C x✝ : C ⊢ { obj := fun X => mk PUnit.{1} fun x => X, map := fun {X Y} f x x => f }.map (𝟙 x✝) = 𝟙 ({ obj := fun X => mk PUnit.{1} fun x => X, map := fun {X Y} f x x => f }.obj x✝)
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_comp CategoryTheory.Functor.mapMatComp end Functor namespace Mat_ /-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by
ext ⟨⟩
/-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by
Mathlib.CategoryTheory.Preadditive.Mat.303_0.xG9GKY7NTklnF73
/-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X
Mathlib_CategoryTheory_Preadditive_Mat
case H.unit C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C x✝ : C j✝ : ({ obj := fun X => mk PUnit.{1} fun x => X, map := fun {X Y} f x x => f }.obj x✝).ι ⊢ { obj := fun X => mk PUnit.{1} fun x => X, map := fun {X Y} f x x => f }.map (𝟙 x✝) PUnit.unit j✝ = 𝟙 ({ obj := fun X => mk PUnit.{1} fun x => X, map := fun {X Y} f x x => f }.obj x✝) PUnit.unit j✝
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_comp CategoryTheory.Functor.mapMatComp end Functor namespace Mat_ /-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by ext ⟨⟩;
simp
/-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by ext ⟨⟩;
Mathlib.CategoryTheory.Preadditive.Mat.303_0.xG9GKY7NTklnF73
/-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X
Mathlib_CategoryTheory_Preadditive_Mat
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C X✝ Y✝ Z✝ : C x✝¹ : X✝ ⟶ Y✝ x✝ : Y✝ ⟶ Z✝ ⊢ { obj := fun X => mk PUnit.{1} fun x => X, map := fun {X Y} f x x => f }.map (x✝¹ ≫ x✝) = { obj := fun X => mk PUnit.{1} fun x => X, map := fun {X Y} f x x => f }.map x✝¹ ≫ { obj := fun X => mk PUnit.{1} fun x => X, map := fun {X Y} f x x => f }.map x✝
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_comp CategoryTheory.Functor.mapMatComp end Functor namespace Mat_ /-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by ext ⟨⟩; simp map_comp _ _ := by
ext ⟨⟩
/-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by ext ⟨⟩; simp map_comp _ _ := by
Mathlib.CategoryTheory.Preadditive.Mat.303_0.xG9GKY7NTklnF73
/-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X
Mathlib_CategoryTheory_Preadditive_Mat
case H.unit C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C X✝ Y✝ Z✝ : C x✝¹ : X✝ ⟶ Y✝ x✝ : Y✝ ⟶ Z✝ j✝ : ({ obj := fun X => mk PUnit.{1} fun x => X, map := fun {X Y} f x x => f }.obj Z✝).ι ⊢ { obj := fun X => mk PUnit.{1} fun x => X, map := fun {X Y} f x x => f }.map (x✝¹ ≫ x✝) PUnit.unit j✝ = ({ obj := fun X => mk PUnit.{1} fun x => X, map := fun {X Y} f x x => f }.map x✝¹ ≫ { obj := fun X => mk PUnit.{1} fun x => X, map := fun {X Y} f x x => f }.map x✝) PUnit.unit j✝
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_comp CategoryTheory.Functor.mapMatComp end Functor namespace Mat_ /-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by ext ⟨⟩; simp map_comp _ _ := by ext ⟨⟩;
simp
/-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by ext ⟨⟩; simp map_comp _ _ := by ext ⟨⟩;
Mathlib.CategoryTheory.Preadditive.Mat.303_0.xG9GKY7NTklnF73
/-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X
Mathlib_CategoryTheory_Preadditive_Mat
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M : Mat_ C ⊢ ((biproduct.lift fun i j k => if h : j = i then eqToHom (_ : X M j = X M i) else 0) ≫ biproduct.desc fun i j k => if h : i = k then eqToHom (_ : X M i = X M k) else 0) = 𝟙 M
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_comp CategoryTheory.Functor.mapMatComp end Functor namespace Mat_ /-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by ext ⟨⟩; simp map_comp _ _ := by ext ⟨⟩; simp set_option linter.uppercaseLean3 false in #align category_theory.Mat_.embedding CategoryTheory.Mat_.embedding namespace Embedding instance : Faithful (embedding C) where map_injective h := congr_fun (congr_fun h PUnit.unit) PUnit.unit instance : Full (embedding C) where preimage f := f PUnit.unit PUnit.unit instance : Functor.Additive (embedding C) where end Embedding instance [Inhabited C] : Inhabited (Mat_ C) := ⟨(embedding C).obj default⟩ open CategoryTheory.Limits variable {C} /-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by
simp only [biproduct.lift_desc]
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by
Mathlib.CategoryTheory.Preadditive.Mat.332_0.xG9GKY7NTklnF73
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom
Mathlib_CategoryTheory_Preadditive_Mat
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M : Mat_ C ⊢ (∑ j : M.ι, (fun j_1 k => if h : j_1 = j then eqToHom (_ : X M j_1 = X M j) else 0) ≫ fun j_1 k => if h : j = k then eqToHom (_ : X M j = X M k) else 0) = 𝟙 M
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_comp CategoryTheory.Functor.mapMatComp end Functor namespace Mat_ /-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by ext ⟨⟩; simp map_comp _ _ := by ext ⟨⟩; simp set_option linter.uppercaseLean3 false in #align category_theory.Mat_.embedding CategoryTheory.Mat_.embedding namespace Embedding instance : Faithful (embedding C) where map_injective h := congr_fun (congr_fun h PUnit.unit) PUnit.unit instance : Full (embedding C) where preimage f := f PUnit.unit PUnit.unit instance : Functor.Additive (embedding C) where end Embedding instance [Inhabited C] : Inhabited (Mat_ C) := ⟨(embedding C).obj default⟩ open CategoryTheory.Limits variable {C} /-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc]
funext i j
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc]
Mathlib.CategoryTheory.Preadditive.Mat.332_0.xG9GKY7NTklnF73
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom
Mathlib_CategoryTheory_Preadditive_Mat
case h.h C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M : Mat_ C i j : M.ι ⊢ Finset.sum Finset.univ (fun j => (fun j_1 k => if h : j_1 = j then eqToHom (_ : X M j_1 = X M j) else 0) ≫ fun j_1 k => if h : j = k then eqToHom (_ : X M j = X M k) else 0) i j = 𝟙 M i j
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_comp CategoryTheory.Functor.mapMatComp end Functor namespace Mat_ /-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by ext ⟨⟩; simp map_comp _ _ := by ext ⟨⟩; simp set_option linter.uppercaseLean3 false in #align category_theory.Mat_.embedding CategoryTheory.Mat_.embedding namespace Embedding instance : Faithful (embedding C) where map_injective h := congr_fun (congr_fun h PUnit.unit) PUnit.unit instance : Full (embedding C) where preimage f := f PUnit.unit PUnit.unit instance : Functor.Additive (embedding C) where end Embedding instance [Inhabited C] : Inhabited (Mat_ C) := ⟨(embedding C).obj default⟩ open CategoryTheory.Limits variable {C} /-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j
dsimp [id_def]
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j
Mathlib.CategoryTheory.Preadditive.Mat.332_0.xG9GKY7NTklnF73
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom
Mathlib_CategoryTheory_Preadditive_Mat
case h.h C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M : Mat_ C i j : M.ι ⊢ Finset.sum Finset.univ (fun j => (fun j_1 k => if h : j_1 = j then eqToHom (_ : X M j_1 = X M j) else 0) ≫ fun j_1 k => if h : j = k then eqToHom (_ : X M j = X M k) else 0) i j = if h : i = j then eqToHom (_ : X M i = X M j) else 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_comp CategoryTheory.Functor.mapMatComp end Functor namespace Mat_ /-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by ext ⟨⟩; simp map_comp _ _ := by ext ⟨⟩; simp set_option linter.uppercaseLean3 false in #align category_theory.Mat_.embedding CategoryTheory.Mat_.embedding namespace Embedding instance : Faithful (embedding C) where map_injective h := congr_fun (congr_fun h PUnit.unit) PUnit.unit instance : Full (embedding C) where preimage f := f PUnit.unit PUnit.unit instance : Functor.Additive (embedding C) where end Embedding instance [Inhabited C] : Inhabited (Mat_ C) := ⟨(embedding C).obj default⟩ open CategoryTheory.Limits variable {C} /-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def]
rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def]
Mathlib.CategoryTheory.Preadditive.Mat.332_0.xG9GKY7NTklnF73
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom
Mathlib_CategoryTheory_Preadditive_Mat
case h.h C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M : Mat_ C i j : M.ι ⊢ ((fun j k => if h : j = i then eqToHom (_ : X M j = X M i) else 0) ≫ fun j k => if h : i = k then eqToHom (_ : X M i = X M k) else 0) i j = if h : i = j then eqToHom (_ : X M i = X M j) else 0 case h.h.h₀ C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M : Mat_ C i j : M.ι ⊢ ∀ b ∈ Finset.univ, b ≠ i → ((fun j k => if h : j = b then eqToHom (_ : X M j = X M b) else 0) ≫ fun j k => if h : b = k then eqToHom (_ : X M b = X M k) else 0) i j = 0 case h.h.h₁ C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M : Mat_ C i j : M.ι ⊢ i ∉ Finset.univ → ((fun j k => if h : j = i then eqToHom (_ : X M j = X M i) else 0) ≫ fun j k => if h : i = k then eqToHom (_ : X M i = X M k) else 0) i j = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_comp CategoryTheory.Functor.mapMatComp end Functor namespace Mat_ /-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by ext ⟨⟩; simp map_comp _ _ := by ext ⟨⟩; simp set_option linter.uppercaseLean3 false in #align category_theory.Mat_.embedding CategoryTheory.Mat_.embedding namespace Embedding instance : Faithful (embedding C) where map_injective h := congr_fun (congr_fun h PUnit.unit) PUnit.unit instance : Full (embedding C) where preimage f := f PUnit.unit PUnit.unit instance : Functor.Additive (embedding C) where end Embedding instance [Inhabited C] : Inhabited (Mat_ C) := ⟨(embedding C).obj default⟩ open CategoryTheory.Limits variable {C} /-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i];
rotate_left
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i];
Mathlib.CategoryTheory.Preadditive.Mat.332_0.xG9GKY7NTklnF73
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom
Mathlib_CategoryTheory_Preadditive_Mat
case h.h.h₀ C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M : Mat_ C i j : M.ι ⊢ ∀ b ∈ Finset.univ, b ≠ i → ((fun j k => if h : j = b then eqToHom (_ : X M j = X M b) else 0) ≫ fun j k => if h : b = k then eqToHom (_ : X M b = X M k) else 0) i j = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_comp CategoryTheory.Functor.mapMatComp end Functor namespace Mat_ /-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by ext ⟨⟩; simp map_comp _ _ := by ext ⟨⟩; simp set_option linter.uppercaseLean3 false in #align category_theory.Mat_.embedding CategoryTheory.Mat_.embedding namespace Embedding instance : Faithful (embedding C) where map_injective h := congr_fun (congr_fun h PUnit.unit) PUnit.unit instance : Full (embedding C) where preimage f := f PUnit.unit PUnit.unit instance : Functor.Additive (embedding C) where end Embedding instance [Inhabited C] : Inhabited (Mat_ C) := ⟨(embedding C).obj default⟩ open CategoryTheory.Limits variable {C} /-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]; rotate_left ·
intro b _ hb
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]; rotate_left ·
Mathlib.CategoryTheory.Preadditive.Mat.332_0.xG9GKY7NTklnF73
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom
Mathlib_CategoryTheory_Preadditive_Mat
case h.h.h₀ C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M : Mat_ C i j b : M.ι a✝ : b ∈ Finset.univ hb : b ≠ i ⊢ ((fun j k => if h : j = b then eqToHom (_ : X M j = X M b) else 0) ≫ fun j k => if h : b = k then eqToHom (_ : X M b = X M k) else 0) i j = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_comp CategoryTheory.Functor.mapMatComp end Functor namespace Mat_ /-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by ext ⟨⟩; simp map_comp _ _ := by ext ⟨⟩; simp set_option linter.uppercaseLean3 false in #align category_theory.Mat_.embedding CategoryTheory.Mat_.embedding namespace Embedding instance : Faithful (embedding C) where map_injective h := congr_fun (congr_fun h PUnit.unit) PUnit.unit instance : Full (embedding C) where preimage f := f PUnit.unit PUnit.unit instance : Functor.Additive (embedding C) where end Embedding instance [Inhabited C] : Inhabited (Mat_ C) := ⟨(embedding C).obj default⟩ open CategoryTheory.Limits variable {C} /-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]; rotate_left · intro b _ hb
dsimp
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]; rotate_left · intro b _ hb
Mathlib.CategoryTheory.Preadditive.Mat.332_0.xG9GKY7NTklnF73
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom
Mathlib_CategoryTheory_Preadditive_Mat
case h.h.h₀ C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M : Mat_ C i j b : M.ι a✝ : b ∈ Finset.univ hb : b ≠ i ⊢ (∑ j_1 in {PUnit.unit}, (if h : i = b then eqToHom (_ : X M i = X M b) else 0) ≫ if h : b = j then eqToHom (_ : X M b = X M j) else 0) = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_comp CategoryTheory.Functor.mapMatComp end Functor namespace Mat_ /-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by ext ⟨⟩; simp map_comp _ _ := by ext ⟨⟩; simp set_option linter.uppercaseLean3 false in #align category_theory.Mat_.embedding CategoryTheory.Mat_.embedding namespace Embedding instance : Faithful (embedding C) where map_injective h := congr_fun (congr_fun h PUnit.unit) PUnit.unit instance : Full (embedding C) where preimage f := f PUnit.unit PUnit.unit instance : Functor.Additive (embedding C) where end Embedding instance [Inhabited C] : Inhabited (Mat_ C) := ⟨(embedding C).obj default⟩ open CategoryTheory.Limits variable {C} /-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]; rotate_left · intro b _ hb dsimp
simp only [Finset.sum_const, Finset.card_singleton, one_smul]
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]; rotate_left · intro b _ hb dsimp
Mathlib.CategoryTheory.Preadditive.Mat.332_0.xG9GKY7NTklnF73
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom
Mathlib_CategoryTheory_Preadditive_Mat
case h.h.h₀ C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M : Mat_ C i j b : M.ι a✝ : b ∈ Finset.univ hb : b ≠ i ⊢ ((if h : i = b then eqToHom (_ : X M i = X M b) else 0) ≫ if h : b = j then eqToHom (_ : X M b = X M j) else 0) = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_comp CategoryTheory.Functor.mapMatComp end Functor namespace Mat_ /-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by ext ⟨⟩; simp map_comp _ _ := by ext ⟨⟩; simp set_option linter.uppercaseLean3 false in #align category_theory.Mat_.embedding CategoryTheory.Mat_.embedding namespace Embedding instance : Faithful (embedding C) where map_injective h := congr_fun (congr_fun h PUnit.unit) PUnit.unit instance : Full (embedding C) where preimage f := f PUnit.unit PUnit.unit instance : Functor.Additive (embedding C) where end Embedding instance [Inhabited C] : Inhabited (Mat_ C) := ⟨(embedding C).obj default⟩ open CategoryTheory.Limits variable {C} /-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]; rotate_left · intro b _ hb dsimp simp only [Finset.sum_const, Finset.card_singleton, one_smul]
rw [dif_neg hb.symm, zero_comp]
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]; rotate_left · intro b _ hb dsimp simp only [Finset.sum_const, Finset.card_singleton, one_smul]
Mathlib.CategoryTheory.Preadditive.Mat.332_0.xG9GKY7NTklnF73
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom
Mathlib_CategoryTheory_Preadditive_Mat
case h.h.h₁ C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M : Mat_ C i j : M.ι ⊢ i ∉ Finset.univ → ((fun j k => if h : j = i then eqToHom (_ : X M j = X M i) else 0) ≫ fun j k => if h : i = k then eqToHom (_ : X M i = X M k) else 0) i j = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_comp CategoryTheory.Functor.mapMatComp end Functor namespace Mat_ /-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by ext ⟨⟩; simp map_comp _ _ := by ext ⟨⟩; simp set_option linter.uppercaseLean3 false in #align category_theory.Mat_.embedding CategoryTheory.Mat_.embedding namespace Embedding instance : Faithful (embedding C) where map_injective h := congr_fun (congr_fun h PUnit.unit) PUnit.unit instance : Full (embedding C) where preimage f := f PUnit.unit PUnit.unit instance : Functor.Additive (embedding C) where end Embedding instance [Inhabited C] : Inhabited (Mat_ C) := ⟨(embedding C).obj default⟩ open CategoryTheory.Limits variable {C} /-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]; rotate_left · intro b _ hb dsimp simp only [Finset.sum_const, Finset.card_singleton, one_smul] rw [dif_neg hb.symm, zero_comp] ·
intro h
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]; rotate_left · intro b _ hb dsimp simp only [Finset.sum_const, Finset.card_singleton, one_smul] rw [dif_neg hb.symm, zero_comp] ·
Mathlib.CategoryTheory.Preadditive.Mat.332_0.xG9GKY7NTklnF73
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom
Mathlib_CategoryTheory_Preadditive_Mat
case h.h.h₁ C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M : Mat_ C i j : M.ι h : i ∉ Finset.univ ⊢ ((fun j k => if h : j = i then eqToHom (_ : X M j = X M i) else 0) ≫ fun j k => if h : i = k then eqToHom (_ : X M i = X M k) else 0) i j = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_comp CategoryTheory.Functor.mapMatComp end Functor namespace Mat_ /-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by ext ⟨⟩; simp map_comp _ _ := by ext ⟨⟩; simp set_option linter.uppercaseLean3 false in #align category_theory.Mat_.embedding CategoryTheory.Mat_.embedding namespace Embedding instance : Faithful (embedding C) where map_injective h := congr_fun (congr_fun h PUnit.unit) PUnit.unit instance : Full (embedding C) where preimage f := f PUnit.unit PUnit.unit instance : Functor.Additive (embedding C) where end Embedding instance [Inhabited C] : Inhabited (Mat_ C) := ⟨(embedding C).obj default⟩ open CategoryTheory.Limits variable {C} /-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]; rotate_left · intro b _ hb dsimp simp only [Finset.sum_const, Finset.card_singleton, one_smul] rw [dif_neg hb.symm, zero_comp] · intro h
simp at h
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]; rotate_left · intro b _ hb dsimp simp only [Finset.sum_const, Finset.card_singleton, one_smul] rw [dif_neg hb.symm, zero_comp] · intro h
Mathlib.CategoryTheory.Preadditive.Mat.332_0.xG9GKY7NTklnF73
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom
Mathlib_CategoryTheory_Preadditive_Mat
case h.h C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M : Mat_ C i j : M.ι ⊢ ((fun j k => if h : j = i then eqToHom (_ : X M j = X M i) else 0) ≫ fun j k => if h : i = k then eqToHom (_ : X M i = X M k) else 0) i j = if h : i = j then eqToHom (_ : X M i = X M j) else 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_comp CategoryTheory.Functor.mapMatComp end Functor namespace Mat_ /-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by ext ⟨⟩; simp map_comp _ _ := by ext ⟨⟩; simp set_option linter.uppercaseLean3 false in #align category_theory.Mat_.embedding CategoryTheory.Mat_.embedding namespace Embedding instance : Faithful (embedding C) where map_injective h := congr_fun (congr_fun h PUnit.unit) PUnit.unit instance : Full (embedding C) where preimage f := f PUnit.unit PUnit.unit instance : Functor.Additive (embedding C) where end Embedding instance [Inhabited C] : Inhabited (Mat_ C) := ⟨(embedding C).obj default⟩ open CategoryTheory.Limits variable {C} /-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]; rotate_left · intro b _ hb dsimp simp only [Finset.sum_const, Finset.card_singleton, one_smul] rw [dif_neg hb.symm, zero_comp] · intro h simp at h
simp
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]; rotate_left · intro b _ hb dsimp simp only [Finset.sum_const, Finset.card_singleton, one_smul] rw [dif_neg hb.symm, zero_comp] · intro h simp at h
Mathlib.CategoryTheory.Preadditive.Mat.332_0.xG9GKY7NTklnF73
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom
Mathlib_CategoryTheory_Preadditive_Mat
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M : Mat_ C ⊢ ((biproduct.desc fun i j k => if h : i = k then eqToHom (_ : X M i = X M k) else 0) ≫ biproduct.lift fun i j k => if h : j = i then eqToHom (_ : X M j = X M i) else 0) = 𝟙 (⨁ fun i => (embedding C).obj (X M i))
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_comp CategoryTheory.Functor.mapMatComp end Functor namespace Mat_ /-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by ext ⟨⟩; simp map_comp _ _ := by ext ⟨⟩; simp set_option linter.uppercaseLean3 false in #align category_theory.Mat_.embedding CategoryTheory.Mat_.embedding namespace Embedding instance : Faithful (embedding C) where map_injective h := congr_fun (congr_fun h PUnit.unit) PUnit.unit instance : Full (embedding C) where preimage f := f PUnit.unit PUnit.unit instance : Functor.Additive (embedding C) where end Embedding instance [Inhabited C] : Inhabited (Mat_ C) := ⟨(embedding C).obj default⟩ open CategoryTheory.Limits variable {C} /-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]; rotate_left · intro b _ hb dsimp simp only [Finset.sum_const, Finset.card_singleton, one_smul] rw [dif_neg hb.symm, zero_comp] · intro h simp at h simp inv_hom_id := by
apply biproduct.hom_ext
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]; rotate_left · intro b _ hb dsimp simp only [Finset.sum_const, Finset.card_singleton, one_smul] rw [dif_neg hb.symm, zero_comp] · intro h simp at h simp inv_hom_id := by
Mathlib.CategoryTheory.Preadditive.Mat.332_0.xG9GKY7NTklnF73
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom
Mathlib_CategoryTheory_Preadditive_Mat
case w C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M : Mat_ C ⊢ ∀ (j : M.ι), ((biproduct.desc fun i j k => if h : i = k then eqToHom (_ : X M i = X M k) else 0) ≫ biproduct.lift fun i j k => if h : j = i then eqToHom (_ : X M j = X M i) else 0) ≫ biproduct.π (fun i => (embedding C).obj (X M i)) j = 𝟙 (⨁ fun i => (embedding C).obj (X M i)) ≫ biproduct.π (fun i => (embedding C).obj (X M i)) j
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_comp CategoryTheory.Functor.mapMatComp end Functor namespace Mat_ /-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by ext ⟨⟩; simp map_comp _ _ := by ext ⟨⟩; simp set_option linter.uppercaseLean3 false in #align category_theory.Mat_.embedding CategoryTheory.Mat_.embedding namespace Embedding instance : Faithful (embedding C) where map_injective h := congr_fun (congr_fun h PUnit.unit) PUnit.unit instance : Full (embedding C) where preimage f := f PUnit.unit PUnit.unit instance : Functor.Additive (embedding C) where end Embedding instance [Inhabited C] : Inhabited (Mat_ C) := ⟨(embedding C).obj default⟩ open CategoryTheory.Limits variable {C} /-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]; rotate_left · intro b _ hb dsimp simp only [Finset.sum_const, Finset.card_singleton, one_smul] rw [dif_neg hb.symm, zero_comp] · intro h simp at h simp inv_hom_id := by apply biproduct.hom_ext
intro i
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]; rotate_left · intro b _ hb dsimp simp only [Finset.sum_const, Finset.card_singleton, one_smul] rw [dif_neg hb.symm, zero_comp] · intro h simp at h simp inv_hom_id := by apply biproduct.hom_ext
Mathlib.CategoryTheory.Preadditive.Mat.332_0.xG9GKY7NTklnF73
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom
Mathlib_CategoryTheory_Preadditive_Mat
case w C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M : Mat_ C i : M.ι ⊢ ((biproduct.desc fun i j k => if h : i = k then eqToHom (_ : X M i = X M k) else 0) ≫ biproduct.lift fun i j k => if h : j = i then eqToHom (_ : X M j = X M i) else 0) ≫ biproduct.π (fun i => (embedding C).obj (X M i)) i = 𝟙 (⨁ fun i => (embedding C).obj (X M i)) ≫ biproduct.π (fun i => (embedding C).obj (X M i)) i
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_comp CategoryTheory.Functor.mapMatComp end Functor namespace Mat_ /-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by ext ⟨⟩; simp map_comp _ _ := by ext ⟨⟩; simp set_option linter.uppercaseLean3 false in #align category_theory.Mat_.embedding CategoryTheory.Mat_.embedding namespace Embedding instance : Faithful (embedding C) where map_injective h := congr_fun (congr_fun h PUnit.unit) PUnit.unit instance : Full (embedding C) where preimage f := f PUnit.unit PUnit.unit instance : Functor.Additive (embedding C) where end Embedding instance [Inhabited C] : Inhabited (Mat_ C) := ⟨(embedding C).obj default⟩ open CategoryTheory.Limits variable {C} /-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]; rotate_left · intro b _ hb dsimp simp only [Finset.sum_const, Finset.card_singleton, one_smul] rw [dif_neg hb.symm, zero_comp] · intro h simp at h simp inv_hom_id := by apply biproduct.hom_ext intro i
apply biproduct.hom_ext'
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]; rotate_left · intro b _ hb dsimp simp only [Finset.sum_const, Finset.card_singleton, one_smul] rw [dif_neg hb.symm, zero_comp] · intro h simp at h simp inv_hom_id := by apply biproduct.hom_ext intro i
Mathlib.CategoryTheory.Preadditive.Mat.332_0.xG9GKY7NTklnF73
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom
Mathlib_CategoryTheory_Preadditive_Mat
case w.w C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M : Mat_ C i : M.ι ⊢ ∀ (j : M.ι), biproduct.ι (fun i => (embedding C).obj (X M i)) j ≫ ((biproduct.desc fun i j k => if h : i = k then eqToHom (_ : X M i = X M k) else 0) ≫ biproduct.lift fun i j k => if h : j = i then eqToHom (_ : X M j = X M i) else 0) ≫ biproduct.π (fun i => (embedding C).obj (X M i)) i = biproduct.ι (fun i => (embedding C).obj (X M i)) j ≫ 𝟙 (⨁ fun i => (embedding C).obj (X M i)) ≫ biproduct.π (fun i => (embedding C).obj (X M i)) i
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_comp CategoryTheory.Functor.mapMatComp end Functor namespace Mat_ /-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by ext ⟨⟩; simp map_comp _ _ := by ext ⟨⟩; simp set_option linter.uppercaseLean3 false in #align category_theory.Mat_.embedding CategoryTheory.Mat_.embedding namespace Embedding instance : Faithful (embedding C) where map_injective h := congr_fun (congr_fun h PUnit.unit) PUnit.unit instance : Full (embedding C) where preimage f := f PUnit.unit PUnit.unit instance : Functor.Additive (embedding C) where end Embedding instance [Inhabited C] : Inhabited (Mat_ C) := ⟨(embedding C).obj default⟩ open CategoryTheory.Limits variable {C} /-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]; rotate_left · intro b _ hb dsimp simp only [Finset.sum_const, Finset.card_singleton, one_smul] rw [dif_neg hb.symm, zero_comp] · intro h simp at h simp inv_hom_id := by apply biproduct.hom_ext intro i apply biproduct.hom_ext'
intro j
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]; rotate_left · intro b _ hb dsimp simp only [Finset.sum_const, Finset.card_singleton, one_smul] rw [dif_neg hb.symm, zero_comp] · intro h simp at h simp inv_hom_id := by apply biproduct.hom_ext intro i apply biproduct.hom_ext'
Mathlib.CategoryTheory.Preadditive.Mat.332_0.xG9GKY7NTklnF73
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom
Mathlib_CategoryTheory_Preadditive_Mat
case w.w C : Type u₁ inst✝¹ : Category.{v₁, u₁} C inst✝ : Preadditive C M : Mat_ C i j : M.ι ⊢ biproduct.ι (fun i => (embedding C).obj (X M i)) j ≫ ((biproduct.desc fun i j k => if h : i = k then eqToHom (_ : X M i = X M k) else 0) ≫ biproduct.lift fun i j k => if h : j = i then eqToHom (_ : X M j = X M i) else 0) ≫ biproduct.π (fun i => (embedding C).obj (X M i)) i = biproduct.ι (fun i => (embedding C).obj (X M i)) j ≫ 𝟙 (⨁ fun i => (embedding C).obj (X M i)) ≫ biproduct.π (fun i => (embedding C).obj (X M i)) i
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Algebra.BigOperators.Basic import Mathlib.Algebra.BigOperators.Pi import Mathlib.CategoryTheory.Limits.Shapes.Biproducts import Mathlib.CategoryTheory.Preadditive.Basic import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.Data.Matrix.DMatrix import Mathlib.Data.Matrix.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.CategoryTheory.Preadditive.SingleObj import Mathlib.Algebra.Opposites #align_import category_theory.preadditive.Mat from "leanprover-community/mathlib"@"829895f162a1f29d0133f4b3538f4cd1fb5bffd3" /-! # Matrices over a category. When `C` is a preadditive category, `Mat_ C` is the preadditive category whose objects are finite tuples of objects in `C`, and whose morphisms are matrices of morphisms from `C`. There is a functor `Mat_.embedding : C ⥤ Mat_ C` sending morphisms to one-by-one matrices. `Mat_ C` has finite biproducts. ## The additive envelope We show that this construction is the "additive envelope" of `C`, in the sense that any additive functor `F : C ⥤ D` to a category `D` with biproducts lifts to a functor `Mat_.lift F : Mat_ C ⥤ D`, Moreover, this functor is unique (up to natural isomorphisms) amongst functors `L : Mat_ C ⥤ D` such that `embedding C ⋙ L ≅ F`. (As we don't have 2-category theory, we can't explicitly state that `Mat_ C` is the initial object in the 2-category of categories under `C` which have biproducts.) As a consequence, when `C` already has finite biproducts we have `Mat_ C ≌ C`. ## Future work We should provide a more convenient `Mat R`, when `R` is a ring, as a category with objects `n : FinType`, and whose morphisms are matrices with components in `R`. Ideally this would conveniently interact with both `Mat_` and `Matrix`. -/ open CategoryTheory CategoryTheory.Preadditive open scoped BigOperators Classical noncomputable section namespace CategoryTheory universe w v₁ v₂ u₁ u₂ variable (C : Type u₁) [Category.{v₁} C] [Preadditive C] /-- An object in `Mat_ C` is a finite tuple of objects in `C`. -/ structure Mat_ where ι : Type [fintype : Fintype ι] X : ι → C set_option linter.uppercaseLean3 false in #align category_theory.Mat_ CategoryTheory.Mat_ attribute [instance] Mat_.fintype namespace Mat_ variable {C} -- porting note: removed @[nolint has_nonempty_instance] /-- A morphism in `Mat_ C` is a dependently typed matrix of morphisms. -/ def Hom (M N : Mat_ C) : Type v₁ := DMatrix M.ι N.ι fun i j => M.X i ⟶ N.X j set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom CategoryTheory.Mat_.Hom namespace Hom /-- The identity matrix consists of identity morphisms on the diagonal, and zeros elsewhere. -/ def id (M : Mat_ C) : Hom M M := fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.id CategoryTheory.Mat_.Hom.id /-- Composition of matrices using matrix multiplication. -/ def comp {M N K : Mat_ C} (f : Hom M N) (g : Hom N K) : Hom M K := fun i k => ∑ j : N.ι, f i j ≫ g j k set_option linter.uppercaseLean3 false in #align category_theory.Mat_.hom.comp CategoryTheory.Mat_.Hom.comp end Hom section attribute [local simp] Hom.id Hom.comp instance : Category.{v₁} (Mat_ C) where Hom := Hom id := Hom.id comp f g := f.comp g id_comp f := by simp (config := { unfoldPartialApp := true }) [dite_comp] comp_id f := by simp (config := { unfoldPartialApp := true }) [comp_dite] assoc f g h := by apply DMatrix.ext intros simp_rw [Hom.comp, sum_comp, comp_sum, Category.assoc] rw [Finset.sum_comm] -- porting note: added because `DMatrix.ext` is not triggered automatically -- See https://github.com/leanprover-community/mathlib4/issues/5229 @[ext] theorem hom_ext {M N : Mat_ C} (f g : M ⟶ N) (H : ∀ i j, f i j = g i j) : f = g := DMatrix.ext_iff.mp H theorem id_def (M : Mat_ C) : (𝟙 M : Hom M M) = fun i j => if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_def CategoryTheory.Mat_.id_def theorem id_apply (M : Mat_ C) (i j : M.ι) : (𝟙 M : Hom M M) i j = if h : i = j then eqToHom (congr_arg M.X h) else 0 := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply CategoryTheory.Mat_.id_apply @[simp] theorem id_apply_self (M : Mat_ C) (i : M.ι) : (𝟙 M : Hom M M) i i = 𝟙 _ := by simp [id_apply] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_self CategoryTheory.Mat_.id_apply_self @[simp] theorem id_apply_of_ne (M : Mat_ C) (i j : M.ι) (h : i ≠ j) : (𝟙 M : Hom M M) i j = 0 := by simp [id_apply, h] set_option linter.uppercaseLean3 false in #align category_theory.Mat_.id_apply_of_ne CategoryTheory.Mat_.id_apply_of_ne theorem comp_def {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) : f ≫ g = fun i k => ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_def CategoryTheory.Mat_.comp_def @[simp] theorem comp_apply {M N K : Mat_ C} (f : M ⟶ N) (g : N ⟶ K) (i k) : (f ≫ g) i k = ∑ j : N.ι, f i j ≫ g j k := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.comp_apply CategoryTheory.Mat_.comp_apply instance (M N : Mat_ C) : Inhabited (M ⟶ N) := ⟨fun i j => (0 : M.X i ⟶ N.X j)⟩ end -- porting note: to ease the construction of the preadditive structure, the `AddCommGroup` -- was introduced separately and the lemma `add_apply` was moved upwards instance (M N : Mat_ C) : AddCommGroup (M ⟶ N) := by change AddCommGroup (DMatrix M.ι N.ι _) infer_instance @[simp] theorem add_apply {M N : Mat_ C} (f g : M ⟶ N) (i j) : (f + g) i j = f i j + g i j := rfl set_option linter.uppercaseLean3 false in #align category_theory.Mat_.add_apply CategoryTheory.Mat_.add_apply instance : Preadditive (Mat_ C) where add_comp M N K f f' g := by ext; simp [Finset.sum_add_distrib] comp_add M N K f g g' := by ext; simp [Finset.sum_add_distrib] open CategoryTheory.Limits /-- We now prove that `Mat_ C` has finite biproducts. Be warned, however, that `Mat_ C` is not necessarily Krull-Schmidt, and so the internal indexing of a biproduct may have nothing to do with the external indexing, even though the construction we give uses a sigma type. See however `isoBiproductEmbedding`. -/ instance hasFiniteBiproducts : HasFiniteBiproducts (Mat_ C) where out n := { has_biproduct := fun f => hasBiproduct_of_total { pt := ⟨Σ j, (f j).ι, fun p => (f p.1).X p.2⟩ π := fun j x y => by refine' if h : x.1 = j then _ else 0 refine' if h' : @Eq.ndrec (Fin n) x.1 (fun j => (f j).ι) x.2 _ h = y then _ else 0 apply eqToHom substs h h' rfl -- Notice we were careful not to use `subst` until we had a goal in `Prop`. ι := fun j x y => by refine' if h : y.1 = j then _ else 0 refine' if h' : @Eq.ndrec _ y.1 (fun j => (f j).ι) y.2 _ h = x then _ else 0 apply eqToHom substs h h' rfl ι_π := fun j j' => by ext x y dsimp simp_rw [dite_comp, comp_dite] simp only [ite_self, dite_eq_ite, dif_ctx_congr, Limits.comp_zero, Limits.zero_comp, eqToHom_trans, Finset.sum_congr] erw [Finset.sum_sigma] dsimp simp only [if_congr, if_true, dif_ctx_congr, Finset.sum_dite_irrel, Finset.mem_univ, Finset.sum_const_zero, Finset.sum_congr, Finset.sum_dite_eq'] split_ifs with h h' · substs h h' simp only [CategoryTheory.eqToHom_refl, CategoryTheory.Mat_.id_apply_self] · subst h rw [eqToHom_refl, id_apply_of_ne _ _ _ h'] · rfl } (by dsimp ext1 ⟨i, j⟩ rintro ⟨i', j'⟩ rw [Finset.sum_apply, Finset.sum_apply] dsimp rw [Finset.sum_eq_single i]; rotate_left · intro b _ hb apply Finset.sum_eq_zero intro x _ rw [dif_neg hb.symm, zero_comp] · intro hi simp at hi rw [Finset.sum_eq_single j]; rotate_left · intro b _ hb rw [dif_pos rfl, dif_neg, zero_comp] simp only tauto · intro hj simp at hj simp only [eqToHom_refl, dite_eq_ite, ite_true, Category.id_comp, ne_eq, Sigma.mk.inj_iff, not_and, id_def] by_cases h : i' = i · subst h rw [dif_pos rfl] simp only [heq_eq_eq, true_and] by_cases h : j' = j · subst h simp · rw [dif_neg h, dif_neg (Ne.symm h)] · rw [dif_neg h, dif_neg] tauto) } set_option linter.uppercaseLean3 false in #align category_theory.Mat_.has_finite_biproducts CategoryTheory.Mat_.hasFiniteBiproducts end Mat_ namespace Functor variable {C} {D : Type*} [Category.{v₁} D] [Preadditive D] attribute [local simp] Mat_.id_apply eqToHom_map /-- A functor induces a functor of matrix categories. -/ @[simps] def mapMat_ (F : C ⥤ D) [Functor.Additive F] : Mat_ C ⥤ Mat_ D where obj M := ⟨M.ι, fun i => F.obj (M.X i)⟩ map f i j := F.map (f i j) set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_ CategoryTheory.Functor.mapMat_ /-- The identity functor induces the identity functor on matrix categories. -/ @[simps!] def mapMatId : (𝟭 C).mapMat_ ≅ 𝟭 (Mat_ C) := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_id CategoryTheory.Functor.mapMatId /-- Composite functors induce composite functors on matrix categories. -/ @[simps!] def mapMatComp {E : Type*} [Category.{v₁} E] [Preadditive E] (F : C ⥤ D) [Functor.Additive F] (G : D ⥤ E) [Functor.Additive G] : (F ⋙ G).mapMat_ ≅ F.mapMat_ ⋙ G.mapMat_ := NatIso.ofComponents (fun M => eqToIso (by cases M; rfl)) fun {M N} f => by ext cases M; cases N simp [comp_dite, dite_comp] set_option linter.uppercaseLean3 false in #align category_theory.functor.map_Mat_comp CategoryTheory.Functor.mapMatComp end Functor namespace Mat_ /-- The embedding of `C` into `Mat_ C` as one-by-one matrices. (We index the summands by `punit`.) -/ @[simps] def embedding : C ⥤ Mat_ C where obj X := ⟨PUnit, fun _ => X⟩ map f _ _ := f map_id _ := by ext ⟨⟩; simp map_comp _ _ := by ext ⟨⟩; simp set_option linter.uppercaseLean3 false in #align category_theory.Mat_.embedding CategoryTheory.Mat_.embedding namespace Embedding instance : Faithful (embedding C) where map_injective h := congr_fun (congr_fun h PUnit.unit) PUnit.unit instance : Full (embedding C) where preimage f := f PUnit.unit PUnit.unit instance : Functor.Additive (embedding C) where end Embedding instance [Inhabited C] : Inhabited (Mat_ C) := ⟨(embedding C).obj default⟩ open CategoryTheory.Limits variable {C} /-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]; rotate_left · intro b _ hb dsimp simp only [Finset.sum_const, Finset.card_singleton, one_smul] rw [dif_neg hb.symm, zero_comp] · intro h simp at h simp inv_hom_id := by apply biproduct.hom_ext intro i apply biproduct.hom_ext' intro j
simp only [Category.id_comp, Category.assoc, biproduct.lift_π, biproduct.ι_desc_assoc, biproduct.ι_π]
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom := biproduct.lift fun i j k => if h : j = i then eqToHom (congr_arg M.X h) else 0 inv := biproduct.desc fun i j k => if h : i = k then eqToHom (congr_arg M.X h) else 0 hom_inv_id := by simp only [biproduct.lift_desc] funext i j dsimp [id_def] rw [Finset.sum_apply, Finset.sum_apply, Finset.sum_eq_single i]; rotate_left · intro b _ hb dsimp simp only [Finset.sum_const, Finset.card_singleton, one_smul] rw [dif_neg hb.symm, zero_comp] · intro h simp at h simp inv_hom_id := by apply biproduct.hom_ext intro i apply biproduct.hom_ext' intro j
Mathlib.CategoryTheory.Preadditive.Mat.332_0.xG9GKY7NTklnF73
/-- Every object in `Mat_ C` is isomorphic to the biproduct of its summands. -/ @[simps] def isoBiproductEmbedding (M : Mat_ C) : M ≅ ⨁ fun i => (embedding C).obj (M.X i) where hom
Mathlib_CategoryTheory_Preadditive_Mat