state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
k₂ : ℕ
c : Code
n x : ℕ
x✝ : 0 ≤ k₂
h : x ∈ evaln 0 c n
⊢ x ∈ evaln k₂ c n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by
|
simp [evaln] at h
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
k k₂ : ℕ
c : Code
n x : ℕ
hl : k + 1 ≤ k₂ + 1
h : x ∈ evaln (k + 1) c n
⊢ x ∈ evaln (k₂ + 1) c n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
|
have hl' := Nat.le_of_succ_le_succ hl
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
k k₂ : ℕ
c : Code
n x : ℕ
hl : k + 1 ≤ k₂ + 1
h : x ∈ evaln (k + 1) c n
hl' : k ≤ k₂
⊢ x ∈ evaln (k₂ + 1) c n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
|
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
k k₂ : ℕ
c : Code
n x : ℕ
hl : k + 1 ≤ k₂ + 1
h : x ∈ evaln (k + 1) c n
hl' : k ≤ k₂
⊢ ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
|
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
k k₂ : ℕ
c : Code
n x : ℕ
hl : k + 1 ≤ k₂ + 1
h : x ∈ evaln (k + 1) c n
hl' : k ≤ k₂
⊢ ∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ}, k ≤ k₂ → (o₁ = some x → o₂ = some x) → n ≤ k → o₁ = some x → n ≤ k₂ ∧ o₂ = some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
|
introv h h₁ h₂ h₃
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
k✝ k₂✝ : ℕ
c : Code
n✝ x✝ : ℕ
hl : k✝ + 1 ≤ k₂✝ + 1
h✝ : x✝ ∈ evaln (k✝ + 1) c n✝
hl' : k✝ ≤ k₂✝
k k₂ n x : ℕ
o₁ o₂ : Option ℕ
h : k ≤ k₂
h₁ : o₁ = some x → o₂ = some x
h₂ : n ≤ k
h₃ : o₁ = some x
⊢ n ≤ k₂ ∧ o₂ = some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
|
exact ⟨le_trans h₂ h, h₁ h₃⟩
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
k k₂ : ℕ
c : Code
n x : ℕ
hl : k + 1 ≤ k₂ + 1
h : x ∈ evaln (k + 1) c n
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
⊢ x ∈ evaln (k₂ + 1) c n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
|
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
k k₂ : ℕ
c : Code
n x : ℕ
hl : k + 1 ≤ k₂ + 1
h : x ∈ evaln (k + 1) c n
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
⊢ x ∈ evaln (k₂ + 1) c n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says
|
simp only [Option.mem_def] at h ⊢
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
k k₂ : ℕ
c : Code
n x : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
h : evaln (k + 1) c n = some x
⊢ evaln (k₂ + 1) c n = some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
|
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case zero
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
n x : ℕ
h : evaln (k + 1) zero n = some x
⊢ evaln (k₂ + 1) zero n = some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
rw [evaln] at h ⊢
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case succ
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
n x : ℕ
h : evaln (k + 1) succ n = some x
⊢ evaln (k₂ + 1) succ n = some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
rw [evaln] at h ⊢
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case left
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
n x : ℕ
h : evaln (k + 1) left n = some x
⊢ evaln (k₂ + 1) left n = some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
rw [evaln] at h ⊢
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case right
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
n x : ℕ
h : evaln (k + 1) right n = some x
⊢ evaln (k₂ + 1) right n = some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
rw [evaln] at h ⊢
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case pair
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h : evaln (k + 1) (pair cf cg) n = some x
⊢ evaln (k₂ + 1) (pair cf cg) n = some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
rw [evaln] at h ⊢
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case comp
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h : evaln (k + 1) (comp cf cg) n = some x
⊢ evaln (k₂ + 1) (comp cf cg) n = some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
rw [evaln] at h ⊢
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case prec
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h : evaln (k + 1) (prec cf cg) n = some x
⊢ evaln (k₂ + 1) (prec cf cg) n = some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
rw [evaln] at h ⊢
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case rfind'
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
n x : ℕ
h : evaln (k + 1) (rfind' cf) n = some x
⊢ evaln (k₂ + 1) (rfind' cf) n = some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
rw [evaln] at h ⊢
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case zero
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
n x : ℕ
h :
(fun n => do
guard (n ≤ k)
pure 0)
n =
some x
⊢ (fun n => do
guard (n ≤ k₂)
pure 0)
n =
some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;>
|
refine' this hl' (fun h => _) h
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;>
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case succ
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
n x : ℕ
h :
(fun n => do
guard (n ≤ k)
pure (Nat.succ n))
n =
some x
⊢ (fun n => do
guard (n ≤ k₂)
pure (Nat.succ n))
n =
some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;>
|
refine' this hl' (fun h => _) h
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;>
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case left
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
n x : ℕ
h :
(fun n => do
guard (n ≤ k)
pure (unpair n).1)
n =
some x
⊢ (fun n => do
guard (n ≤ k₂)
pure (unpair n).1)
n =
some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;>
|
refine' this hl' (fun h => _) h
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;>
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case right
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
n x : ℕ
h :
(fun n => do
guard (n ≤ k)
pure (unpair n).2)
n =
some x
⊢ (fun n => do
guard (n ≤ k₂)
pure (unpair n).2)
n =
some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;>
|
refine' this hl' (fun h => _) h
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;>
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case pair
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h :
(fun n => do
guard (n ≤ k)
Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n)
n =
some x
⊢ (fun n => do
guard (n ≤ k₂)
Seq.seq (Nat.pair <$> evaln (k₂ + 1) cf n) fun x => evaln (k₂ + 1) cg n)
n =
some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;>
|
refine' this hl' (fun h => _) h
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;>
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case comp
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h :
(fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x)
n =
some x
⊢ (fun n => do
guard (n ≤ k₂)
let x ← evaln (k₂ + 1) cg n
evaln (k₂ + 1) cf x)
n =
some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;>
|
refine' this hl' (fun h => _) h
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;>
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case prec
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h :
(fun n => do
guard (n ≤ k)
unpaired
(fun a n =>
Nat.casesOn n (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i)))
n)
n =
some x
⊢ (fun n => do
guard (n ≤ k₂)
unpaired
(fun a n =>
Nat.casesOn n (evaln (k₂ + 1) cf a) fun y => do
let i ← evaln k₂ (prec cf cg) (Nat.pair a y)
evaln (k₂ + 1) cg (Nat.pair a (Nat.pair y i)))
n)
n =
some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;>
|
refine' this hl' (fun h => _) h
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;>
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case rfind'
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
n x : ℕ
h :
(fun n => do
guard (n ≤ k)
unpaired
(fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1)))
n)
n =
some x
⊢ (fun n => do
guard (n ≤ k₂)
unpaired
(fun a m => do
let x ← evaln (k₂ + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k₂ (rfind' cf) (Nat.pair a (m + 1)))
n)
n =
some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;>
|
refine' this hl' (fun h => _) h
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;>
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case zero
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
pure 0)
n =
some x
h : x ∈ pure 0
⊢ x ∈ pure 0
case succ
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
pure (Nat.succ n))
n =
some x
h : x ∈ pure (Nat.succ n)
⊢ x ∈ pure (Nat.succ n)
case left
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
pure (unpair n).1)
n =
some x
h : x ∈ pure (unpair n).1
⊢ x ∈ pure (unpair n).1
case right
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
pure (unpair n).2)
n =
some x
h : x ∈ pure (unpair n).2
⊢ x ∈ pure (unpair n).2
case pair
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n)
n =
some x
h : x ∈ Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n
⊢ x ∈ Seq.seq (Nat.pair <$> evaln (k₂ + 1) cf n) fun x => evaln (k₂ + 1) cg n
case comp
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x)
n =
some x
h :
x ∈ do
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
⊢ x ∈ do
let x ← evaln (k₂ + 1) cg n
evaln (k₂ + 1) cf x
case prec
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
unpaired
(fun a n =>
Nat.casesOn n (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i)))
n)
n =
some x
h :
x ∈
unpaired
(fun a n =>
Nat.casesOn n (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i)))
n
⊢ x ∈
unpaired
(fun a n =>
Nat.casesOn n (evaln (k₂ + 1) cf a) fun y => do
let i ← evaln k₂ (prec cf cg) (Nat.pair a y)
evaln (k₂ + 1) cg (Nat.pair a (Nat.pair y i)))
n
case rfind'
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
unpaired
(fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1)))
n)
n =
some x
h :
x ∈
unpaired
(fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1)))
n
⊢ x ∈
unpaired
(fun a m => do
let x ← evaln (k₂ + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k₂ (rfind' cf) (Nat.pair a (m + 1)))
n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
|
iterate 4 exact h
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case zero
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
pure 0)
n =
some x
h : x ∈ pure 0
⊢ x ∈ pure 0
case succ
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
pure (Nat.succ n))
n =
some x
h : x ∈ pure (Nat.succ n)
⊢ x ∈ pure (Nat.succ n)
case left
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
pure (unpair n).1)
n =
some x
h : x ∈ pure (unpair n).1
⊢ x ∈ pure (unpair n).1
case right
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
pure (unpair n).2)
n =
some x
h : x ∈ pure (unpair n).2
⊢ x ∈ pure (unpair n).2
case pair
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n)
n =
some x
h : x ∈ Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n
⊢ x ∈ Seq.seq (Nat.pair <$> evaln (k₂ + 1) cf n) fun x => evaln (k₂ + 1) cg n
case comp
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x)
n =
some x
h :
x ∈ do
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
⊢ x ∈ do
let x ← evaln (k₂ + 1) cg n
evaln (k₂ + 1) cf x
case prec
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
unpaired
(fun a n =>
Nat.casesOn n (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i)))
n)
n =
some x
h :
x ∈
unpaired
(fun a n =>
Nat.casesOn n (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i)))
n
⊢ x ∈
unpaired
(fun a n =>
Nat.casesOn n (evaln (k₂ + 1) cf a) fun y => do
let i ← evaln k₂ (prec cf cg) (Nat.pair a y)
evaln (k₂ + 1) cg (Nat.pair a (Nat.pair y i)))
n
case rfind'
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
unpaired
(fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1)))
n)
n =
some x
h :
x ∈
unpaired
(fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1)))
n
⊢ x ∈
unpaired
(fun a m => do
let x ← evaln (k₂ + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k₂ (rfind' cf) (Nat.pair a (m + 1)))
n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4
|
exact h
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case succ
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
pure (Nat.succ n))
n =
some x
h : x ∈ pure (Nat.succ n)
⊢ x ∈ pure (Nat.succ n)
case left
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
pure (unpair n).1)
n =
some x
h : x ∈ pure (unpair n).1
⊢ x ∈ pure (unpair n).1
case right
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
pure (unpair n).2)
n =
some x
h : x ∈ pure (unpair n).2
⊢ x ∈ pure (unpair n).2
case pair
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n)
n =
some x
h : x ∈ Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n
⊢ x ∈ Seq.seq (Nat.pair <$> evaln (k₂ + 1) cf n) fun x => evaln (k₂ + 1) cg n
case comp
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x)
n =
some x
h :
x ∈ do
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
⊢ x ∈ do
let x ← evaln (k₂ + 1) cg n
evaln (k₂ + 1) cf x
case prec
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
unpaired
(fun a n =>
Nat.casesOn n (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i)))
n)
n =
some x
h :
x ∈
unpaired
(fun a n =>
Nat.casesOn n (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i)))
n
⊢ x ∈
unpaired
(fun a n =>
Nat.casesOn n (evaln (k₂ + 1) cf a) fun y => do
let i ← evaln k₂ (prec cf cg) (Nat.pair a y)
evaln (k₂ + 1) cg (Nat.pair a (Nat.pair y i)))
n
case rfind'
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
unpaired
(fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1)))
n)
n =
some x
h :
x ∈
unpaired
(fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1)))
n
⊢ x ∈
unpaired
(fun a m => do
let x ← evaln (k₂ + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k₂ (rfind' cf) (Nat.pair a (m + 1)))
n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4
|
exact h
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case left
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
pure (unpair n).1)
n =
some x
h : x ∈ pure (unpair n).1
⊢ x ∈ pure (unpair n).1
case right
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
pure (unpair n).2)
n =
some x
h : x ∈ pure (unpair n).2
⊢ x ∈ pure (unpair n).2
case pair
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n)
n =
some x
h : x ∈ Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n
⊢ x ∈ Seq.seq (Nat.pair <$> evaln (k₂ + 1) cf n) fun x => evaln (k₂ + 1) cg n
case comp
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x)
n =
some x
h :
x ∈ do
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
⊢ x ∈ do
let x ← evaln (k₂ + 1) cg n
evaln (k₂ + 1) cf x
case prec
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
unpaired
(fun a n =>
Nat.casesOn n (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i)))
n)
n =
some x
h :
x ∈
unpaired
(fun a n =>
Nat.casesOn n (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i)))
n
⊢ x ∈
unpaired
(fun a n =>
Nat.casesOn n (evaln (k₂ + 1) cf a) fun y => do
let i ← evaln k₂ (prec cf cg) (Nat.pair a y)
evaln (k₂ + 1) cg (Nat.pair a (Nat.pair y i)))
n
case rfind'
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
unpaired
(fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1)))
n)
n =
some x
h :
x ∈
unpaired
(fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1)))
n
⊢ x ∈
unpaired
(fun a m => do
let x ← evaln (k₂ + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k₂ (rfind' cf) (Nat.pair a (m + 1)))
n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4
|
exact h
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case right
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
pure (unpair n).2)
n =
some x
h : x ∈ pure (unpair n).2
⊢ x ∈ pure (unpair n).2
case pair
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n)
n =
some x
h : x ∈ Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n
⊢ x ∈ Seq.seq (Nat.pair <$> evaln (k₂ + 1) cf n) fun x => evaln (k₂ + 1) cg n
case comp
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x)
n =
some x
h :
x ∈ do
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
⊢ x ∈ do
let x ← evaln (k₂ + 1) cg n
evaln (k₂ + 1) cf x
case prec
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
unpaired
(fun a n =>
Nat.casesOn n (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i)))
n)
n =
some x
h :
x ∈
unpaired
(fun a n =>
Nat.casesOn n (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i)))
n
⊢ x ∈
unpaired
(fun a n =>
Nat.casesOn n (evaln (k₂ + 1) cf a) fun y => do
let i ← evaln k₂ (prec cf cg) (Nat.pair a y)
evaln (k₂ + 1) cg (Nat.pair a (Nat.pair y i)))
n
case rfind'
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
unpaired
(fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1)))
n)
n =
some x
h :
x ∈
unpaired
(fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1)))
n
⊢ x ∈
unpaired
(fun a m => do
let x ← evaln (k₂ + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k₂ (rfind' cf) (Nat.pair a (m + 1)))
n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4
|
exact h
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case pair
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n)
n =
some x
h : x ∈ Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n
⊢ x ∈ Seq.seq (Nat.pair <$> evaln (k₂ + 1) cf n) fun x => evaln (k₂ + 1) cg n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
|
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case pair
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n)
n =
some x
h : x ∈ Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n
⊢ x ∈ Seq.seq (Nat.pair <$> evaln (k₂ + 1) cf n) fun x => evaln (k₂ + 1) cg n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
|
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case pair
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
Seq.seq (Nat.pair <$> evaln (k + 1) cf n) fun x => evaln (k + 1) cg n)
n =
some x
h : ∃ a, evaln (k + 1) cf n = some a ∧ ∃ a_1, evaln (k + 1) cg n = some a_1 ∧ Nat.pair a a_1 = x
⊢ ∃ a, evaln (k₂ + 1) cf n = some a ∧ ∃ a_1, evaln (k₂ + 1) cg n = some a_1 ∧ Nat.pair a a_1 = x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
|
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case comp
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x)
n =
some x
h :
x ∈ do
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
⊢ x ∈ do
let x ← evaln (k₂ + 1) cg n
evaln (k₂ + 1) cf x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
|
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case comp
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x)
n =
some x
h :
x ∈ do
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
⊢ x ∈ do
let x ← evaln (k₂ + 1) cg n
evaln (k₂ + 1) cf x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says
|
simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case comp
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x)
n =
some x
h : ∃ a, evaln (k + 1) cg n = some a ∧ evaln (k + 1) cf a = some x
⊢ ∃ a, evaln (k₂ + 1) cg n = some a ∧ evaln (k₂ + 1) cf a = some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
|
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case prec
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
unpaired
(fun a n =>
Nat.casesOn n (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i)))
n)
n =
some x
h :
x ∈
unpaired
(fun a n =>
Nat.casesOn n (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i)))
n
⊢ x ∈
unpaired
(fun a n =>
Nat.casesOn n (evaln (k₂ + 1) cf a) fun y => do
let i ← evaln k₂ (prec cf cg) (Nat.pair a y)
evaln (k₂ + 1) cg (Nat.pair a (Nat.pair y i)))
n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
|
revert h
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case prec
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h :
(fun n => do
guard (n ≤ k)
unpaired
(fun a n =>
Nat.casesOn n (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i)))
n)
n =
some x
⊢ x ∈
unpaired
(fun a n =>
Nat.casesOn n (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i)))
n →
x ∈
unpaired
(fun a n =>
Nat.casesOn n (evaln (k₂ + 1) cf a) fun y => do
let i ← evaln k₂ (prec cf cg) (Nat.pair a y)
evaln (k₂ + 1) cg (Nat.pair a (Nat.pair y i)))
n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
|
simp only [unpaired, bind, Option.mem_def]
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case prec
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h :
(fun n => do
guard (n ≤ k)
unpaired
(fun a n =>
Nat.casesOn n (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i)))
n)
n =
some x
⊢ Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
(unpair n).2 =
some x →
Nat.rec (evaln (k₂ + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k₂ (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k₂ + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
(unpair n).2 =
some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
|
induction n.unpair.2
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case prec.zero
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h :
(fun n => do
guard (n ≤ k)
unpaired
(fun a n =>
Nat.casesOn n (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i)))
n)
n =
some x
⊢ Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
Nat.zero =
some x →
Nat.rec (evaln (k₂ + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k₂ (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k₂ + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
Nat.zero =
some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;>
|
simp
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;>
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case prec.succ
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h :
(fun n => do
guard (n ≤ k)
unpaired
(fun a n =>
Nat.casesOn n (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i)))
n)
n =
some x
n✝ : ℕ
n_ih✝ :
Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
n✝ =
some x →
Nat.rec (evaln (k₂ + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k₂ (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k₂ + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
n✝ =
some x
⊢ Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
(Nat.succ n✝) =
some x →
Nat.rec (evaln (k₂ + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k₂ (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k₂ + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
(Nat.succ n✝) =
some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;>
|
simp
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;>
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case prec.zero
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h :
(fun n => do
guard (n ≤ k)
unpaired
(fun a n =>
Nat.casesOn n (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i)))
n)
n =
some x
⊢ evaln (k + 1) cf (unpair n).1 = some x → evaln (k₂ + 1) cf (unpair n).1 = some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
·
|
apply hf
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
·
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case prec.succ
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf cg : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
hg : ∀ (n x : ℕ), evaln (k + 1) cg n = some x → evaln (k₂ + 1) cg n = some x
n x : ℕ
h :
(fun n => do
guard (n ≤ k)
unpaired
(fun a n =>
Nat.casesOn n (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i)))
n)
n =
some x
n✝ : ℕ
n_ih✝ :
Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
n✝ =
some x →
Nat.rec (evaln (k₂ + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k₂ (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k₂ + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
n✝ =
some x
⊢ ∀ (x_1 : ℕ),
evaln k (prec cf cg) (Nat.pair (unpair n).1 n✝) = some x_1 →
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n✝ x_1)) = some x →
∃ a,
evaln k₂ (prec cf cg) (Nat.pair (unpair n).1 n✝) = some a ∧
evaln (k₂ + 1) cg (Nat.pair (unpair n).1 (Nat.pair n✝ a)) = some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
·
|
exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
·
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case rfind'
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
unpaired
(fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1)))
n)
n =
some x
h :
x ∈
unpaired
(fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1)))
n
⊢ x ∈
unpaired
(fun a m => do
let x ← evaln (k₂ + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k₂ (rfind' cf) (Nat.pair a (m + 1)))
n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
|
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case rfind'
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
unpaired
(fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1)))
n)
n =
some x
h :
x ∈
unpaired
(fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1)))
n
⊢ x ∈
unpaired
(fun a m => do
let x ← evaln (k₂ + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k₂ (rfind' cf) (Nat.pair a (m + 1)))
n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
|
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case rfind'
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
n x : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
unpaired
(fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1)))
n)
n =
some x
h :
∃ a,
evaln (k + 1) cf n = some a ∧
(if a = 0 then pure (unpair n).2 else evaln k (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1))) = some x
⊢ ∃ a,
evaln (k₂ + 1) cf n = some a ∧
(if a = 0 then pure (unpair n).2 else evaln k₂ (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1))) = some x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
|
refine' h.imp fun x => And.imp (hf _ _) _
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case rfind'
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
n x✝ : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
unpaired
(fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1)))
n)
n =
some x✝
h :
∃ a,
evaln (k + 1) cf n = some a ∧
(if a = 0 then pure (unpair n).2 else evaln k (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1))) = some x✝
x : ℕ
⊢ (if x = 0 then pure (unpair n).2 else evaln k (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1))) = some x✝ →
(if x = 0 then pure (unpair n).2 else evaln k₂ (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1))) = some x✝
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
|
by_cases x0 : x = 0
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case pos
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
n x✝ : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
unpaired
(fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1)))
n)
n =
some x✝
h :
∃ a,
evaln (k + 1) cf n = some a ∧
(if a = 0 then pure (unpair n).2 else evaln k (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1))) = some x✝
x : ℕ
x0 : x = 0
⊢ (if x = 0 then pure (unpair n).2 else evaln k (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1))) = some x✝ →
(if x = 0 then pure (unpair n).2 else evaln k₂ (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1))) = some x✝
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;>
|
simp [x0]
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;>
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case neg
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
n x✝ : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
unpaired
(fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1)))
n)
n =
some x✝
h :
∃ a,
evaln (k + 1) cf n = some a ∧
(if a = 0 then pure (unpair n).2 else evaln k (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1))) = some x✝
x : ℕ
x0 : ¬x = 0
⊢ (if x = 0 then pure (unpair n).2 else evaln k (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1))) = some x✝ →
(if x = 0 then pure (unpair n).2 else evaln k₂ (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1))) = some x✝
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;>
|
simp [x0]
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;>
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
case neg
k k₂ : ℕ
hl : k + 1 ≤ k₂ + 1
hl' : k ≤ k₂
this :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ →
(x ∈ o₁ → x ∈ o₂) →
(x ∈ do
guard (n ≤ k)
o₁) →
x ∈ do
guard (n ≤ k₂)
o₂
cf : Code
hf : ∀ (n x : ℕ), evaln (k + 1) cf n = some x → evaln (k₂ + 1) cf n = some x
n x✝ : ℕ
h✝ :
(fun n => do
guard (n ≤ k)
unpaired
(fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then pure m else evaln k (rfind' cf) (Nat.pair a (m + 1)))
n)
n =
some x✝
h :
∃ a,
evaln (k + 1) cf n = some a ∧
(if a = 0 then pure (unpair n).2 else evaln k (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1))) = some x✝
x : ℕ
x0 : ¬x = 0
⊢ evaln k (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1)) = some x✝ →
evaln k₂ (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1)) = some x✝
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
|
exact evaln_mono hl'
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
|
Mathlib.Computability.PartrecCode.783_0.A3c3Aev6SyIRjCJ
|
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl'
|
Mathlib_Computability_PartrecCode
|
x✝ : Code
n x : ℕ
h : x ∈ evaln 0 x✝ n
⊢ x ∈ eval x✝ n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by
|
simp [evaln] at h
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
k : ℕ
c : Code
n x : ℕ
h : x ∈ evaln (k + 1) c n
⊢ x ∈ eval c n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
|
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case zero
k n x : ℕ
h : x ∈ evaln (k + 1) zero n
⊢ x ∈ eval zero n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case succ
k n x : ℕ
h : x ∈ evaln (k + 1) succ n
⊢ x ∈ eval succ n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case left
k n x : ℕ
h : x ∈ evaln (k + 1) left n
⊢ x ∈ eval left n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case right
k n x : ℕ
h : x ∈ evaln (k + 1) right n
⊢ x ∈ eval right n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case pair
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
h : x ∈ evaln (k + 1) (pair cf cg) n
⊢ x ∈ eval (pair cf cg) n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case comp
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
h : x ∈ evaln (k + 1) (comp cf cg) n
⊢ x ∈ eval (comp cf cg) n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case prec
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
h : x ∈ evaln (k + 1) (prec cf cg) n
⊢ x ∈ eval (prec cf cg) n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case rfind'
k : ℕ
cf : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
n x : ℕ
h : x ∈ evaln (k + 1) (rfind' cf) n
⊢ x ∈ eval (rfind' cf) n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case zero
k n x : ℕ
h : n ≤ k ∧ pure 0 = some x
⊢ x ∈ pure 0 n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
|
cases' h with _ h
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case succ
k n x : ℕ
h : n ≤ k ∧ pure (Nat.succ n) = some x
⊢ x = Nat.succ n
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
|
cases' h with _ h
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case left
k n x : ℕ
h : n ≤ k ∧ pure (unpair n).1 = some x
⊢ x = (unpair n).1
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
|
cases' h with _ h
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case right
k n x : ℕ
h : n ≤ k ∧ pure (unpair n).2 = some x
⊢ x = (unpair n).2
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
|
cases' h with _ h
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case pair
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
h : n ≤ k ∧ ∃ a, evaln (k + 1) cf n = some a ∧ ∃ a_1, evaln (k + 1) cg n = some a_1 ∧ Nat.pair a a_1 = x
⊢ ∃ a ∈ eval cf n, ∃ a_1 ∈ eval cg n, Nat.pair a a_1 = x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
|
cases' h with _ h
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case comp
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
h : n ≤ k ∧ ∃ a, evaln (k + 1) cg n = some a ∧ evaln (k + 1) cf a = some x
⊢ ∃ a ∈ eval cg n, x ∈ eval cf a
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
|
cases' h with _ h
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case prec
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
h :
n ≤ k ∧
Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
(unpair n).2 =
some x
⊢ x ∈
Nat.rec (eval cf (unpair n).1) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).1 (Nat.pair y i)))
(unpair n).2
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
|
cases' h with _ h
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case rfind'
k : ℕ
cf : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
n x : ℕ
h :
n ≤ k ∧
∃ a,
evaln (k + 1) cf n = some a ∧
(if a = 0 then pure (unpair n).2 else evaln k (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1))) = some x
⊢ ∃ a,
(0 ∈ eval cf (Nat.pair (unpair n).1 (a + (unpair n).2)) ∧
∀ {m : ℕ}, m < a → ∃ a ∈ eval cf (Nat.pair (unpair n).1 (m + (unpair n).2)), ¬a = 0) ∧
a + (unpair n).2 = x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
|
cases' h with _ h
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case zero.intro
k n x : ℕ
left✝ : n ≤ k
h : pure 0 = some x
⊢ x ∈ pure 0 n
case succ.intro
k n x : ℕ
left✝ : n ≤ k
h : pure (Nat.succ n) = some x
⊢ x = Nat.succ n
case left.intro
k n x : ℕ
left✝ : n ≤ k
h : pure (unpair n).1 = some x
⊢ x = (unpair n).1
case right.intro
k n x : ℕ
left✝ : n ≤ k
h : pure (unpair n).2 = some x
⊢ x = (unpair n).2
case pair.intro
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
left✝ : n ≤ k
h : ∃ a, evaln (k + 1) cf n = some a ∧ ∃ a_1, evaln (k + 1) cg n = some a_1 ∧ Nat.pair a a_1 = x
⊢ ∃ a ∈ eval cf n, ∃ a_1 ∈ eval cg n, Nat.pair a a_1 = x
case comp.intro
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
left✝ : n ≤ k
h : ∃ a, evaln (k + 1) cg n = some a ∧ evaln (k + 1) cf a = some x
⊢ ∃ a ∈ eval cg n, x ∈ eval cf a
case prec.intro
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
left✝ : n ≤ k
h :
Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
(unpair n).2 =
some x
⊢ x ∈
Nat.rec (eval cf (unpair n).1) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).1 (Nat.pair y i)))
(unpair n).2
case rfind'.intro
k : ℕ
cf : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
n x : ℕ
left✝ : n ≤ k
h :
∃ a,
evaln (k + 1) cf n = some a ∧
(if a = 0 then pure (unpair n).2 else evaln k (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1))) = some x
⊢ ∃ a,
(0 ∈ eval cf (Nat.pair (unpair n).1 (a + (unpair n).2)) ∧
∀ {m : ℕ}, m < a → ∃ a ∈ eval cf (Nat.pair (unpair n).1 (m + (unpair n).2)), ¬a = 0) ∧
a + (unpair n).2 = x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
|
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case zero.intro
k n x : ℕ
left✝ : n ≤ k
h : pure 0 = some x
⊢ x ∈ pure 0 n
case succ.intro
k n x : ℕ
left✝ : n ≤ k
h : pure (Nat.succ n) = some x
⊢ x = Nat.succ n
case left.intro
k n x : ℕ
left✝ : n ≤ k
h : pure (unpair n).1 = some x
⊢ x = (unpair n).1
case right.intro
k n x : ℕ
left✝ : n ≤ k
h : pure (unpair n).2 = some x
⊢ x = (unpair n).2
case pair.intro
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
left✝ : n ≤ k
h : ∃ a, evaln (k + 1) cf n = some a ∧ ∃ a_1, evaln (k + 1) cg n = some a_1 ∧ Nat.pair a a_1 = x
⊢ ∃ a ∈ eval cf n, ∃ a_1 ∈ eval cg n, Nat.pair a a_1 = x
case comp.intro
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
left✝ : n ≤ k
h : ∃ a, evaln (k + 1) cg n = some a ∧ evaln (k + 1) cf a = some x
⊢ ∃ a ∈ eval cg n, x ∈ eval cf a
case prec.intro
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
left✝ : n ≤ k
h :
Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
(unpair n).2 =
some x
⊢ x ∈
Nat.rec (eval cf (unpair n).1) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).1 (Nat.pair y i)))
(unpair n).2
case rfind'.intro
k : ℕ
cf : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
n x : ℕ
left✝ : n ≤ k
h :
∃ a,
evaln (k + 1) cf n = some a ∧
(if a = 0 then pure (unpair n).2 else evaln k (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1))) = some x
⊢ ∃ a,
(0 ∈ eval cf (Nat.pair (unpair n).1 (a + (unpair n).2)) ∧
∀ {m : ℕ}, m < a → ∃ a ∈ eval cf (Nat.pair (unpair n).1 (m + (unpair n).2)), ¬a = 0) ∧
a + (unpair n).2 = x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4
|
simpa [pure, PFun.pure, eq_comm] using h
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case succ.intro
k n x : ℕ
left✝ : n ≤ k
h : pure (Nat.succ n) = some x
⊢ x = Nat.succ n
case left.intro
k n x : ℕ
left✝ : n ≤ k
h : pure (unpair n).1 = some x
⊢ x = (unpair n).1
case right.intro
k n x : ℕ
left✝ : n ≤ k
h : pure (unpair n).2 = some x
⊢ x = (unpair n).2
case pair.intro
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
left✝ : n ≤ k
h : ∃ a, evaln (k + 1) cf n = some a ∧ ∃ a_1, evaln (k + 1) cg n = some a_1 ∧ Nat.pair a a_1 = x
⊢ ∃ a ∈ eval cf n, ∃ a_1 ∈ eval cg n, Nat.pair a a_1 = x
case comp.intro
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
left✝ : n ≤ k
h : ∃ a, evaln (k + 1) cg n = some a ∧ evaln (k + 1) cf a = some x
⊢ ∃ a ∈ eval cg n, x ∈ eval cf a
case prec.intro
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
left✝ : n ≤ k
h :
Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
(unpair n).2 =
some x
⊢ x ∈
Nat.rec (eval cf (unpair n).1) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).1 (Nat.pair y i)))
(unpair n).2
case rfind'.intro
k : ℕ
cf : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
n x : ℕ
left✝ : n ≤ k
h :
∃ a,
evaln (k + 1) cf n = some a ∧
(if a = 0 then pure (unpair n).2 else evaln k (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1))) = some x
⊢ ∃ a,
(0 ∈ eval cf (Nat.pair (unpair n).1 (a + (unpair n).2)) ∧
∀ {m : ℕ}, m < a → ∃ a ∈ eval cf (Nat.pair (unpair n).1 (m + (unpair n).2)), ¬a = 0) ∧
a + (unpair n).2 = x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4
|
simpa [pure, PFun.pure, eq_comm] using h
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case left.intro
k n x : ℕ
left✝ : n ≤ k
h : pure (unpair n).1 = some x
⊢ x = (unpair n).1
case right.intro
k n x : ℕ
left✝ : n ≤ k
h : pure (unpair n).2 = some x
⊢ x = (unpair n).2
case pair.intro
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
left✝ : n ≤ k
h : ∃ a, evaln (k + 1) cf n = some a ∧ ∃ a_1, evaln (k + 1) cg n = some a_1 ∧ Nat.pair a a_1 = x
⊢ ∃ a ∈ eval cf n, ∃ a_1 ∈ eval cg n, Nat.pair a a_1 = x
case comp.intro
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
left✝ : n ≤ k
h : ∃ a, evaln (k + 1) cg n = some a ∧ evaln (k + 1) cf a = some x
⊢ ∃ a ∈ eval cg n, x ∈ eval cf a
case prec.intro
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
left✝ : n ≤ k
h :
Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
(unpair n).2 =
some x
⊢ x ∈
Nat.rec (eval cf (unpair n).1) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).1 (Nat.pair y i)))
(unpair n).2
case rfind'.intro
k : ℕ
cf : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
n x : ℕ
left✝ : n ≤ k
h :
∃ a,
evaln (k + 1) cf n = some a ∧
(if a = 0 then pure (unpair n).2 else evaln k (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1))) = some x
⊢ ∃ a,
(0 ∈ eval cf (Nat.pair (unpair n).1 (a + (unpair n).2)) ∧
∀ {m : ℕ}, m < a → ∃ a ∈ eval cf (Nat.pair (unpair n).1 (m + (unpair n).2)), ¬a = 0) ∧
a + (unpair n).2 = x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4
|
simpa [pure, PFun.pure, eq_comm] using h
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case right.intro
k n x : ℕ
left✝ : n ≤ k
h : pure (unpair n).2 = some x
⊢ x = (unpair n).2
case pair.intro
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
left✝ : n ≤ k
h : ∃ a, evaln (k + 1) cf n = some a ∧ ∃ a_1, evaln (k + 1) cg n = some a_1 ∧ Nat.pair a a_1 = x
⊢ ∃ a ∈ eval cf n, ∃ a_1 ∈ eval cg n, Nat.pair a a_1 = x
case comp.intro
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
left✝ : n ≤ k
h : ∃ a, evaln (k + 1) cg n = some a ∧ evaln (k + 1) cf a = some x
⊢ ∃ a ∈ eval cg n, x ∈ eval cf a
case prec.intro
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
left✝ : n ≤ k
h :
Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
(unpair n).2 =
some x
⊢ x ∈
Nat.rec (eval cf (unpair n).1) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).1 (Nat.pair y i)))
(unpair n).2
case rfind'.intro
k : ℕ
cf : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
n x : ℕ
left✝ : n ≤ k
h :
∃ a,
evaln (k + 1) cf n = some a ∧
(if a = 0 then pure (unpair n).2 else evaln k (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1))) = some x
⊢ ∃ a,
(0 ∈ eval cf (Nat.pair (unpair n).1 (a + (unpair n).2)) ∧
∀ {m : ℕ}, m < a → ∃ a ∈ eval cf (Nat.pair (unpair n).1 (m + (unpair n).2)), ¬a = 0) ∧
a + (unpair n).2 = x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4
|
simpa [pure, PFun.pure, eq_comm] using h
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case pair.intro
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
left✝ : n ≤ k
h : ∃ a, evaln (k + 1) cf n = some a ∧ ∃ a_1, evaln (k + 1) cg n = some a_1 ∧ Nat.pair a a_1 = x
⊢ ∃ a ∈ eval cf n, ∃ a_1 ∈ eval cg n, Nat.pair a a_1 = x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
|
rcases h with ⟨y, ef, z, eg, rfl⟩
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case pair.intro.intro.intro.intro.intro
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n : ℕ
left✝ : n ≤ k
y : ℕ
ef : evaln (k + 1) cf n = some y
z : ℕ
eg : evaln (k + 1) cg n = some z
⊢ ∃ a ∈ eval cf n, ∃ a_1 ∈ eval cg n, Nat.pair a a_1 = Nat.pair y z
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
|
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case comp.intro
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
left✝ : n ≤ k
h : ∃ a, evaln (k + 1) cg n = some a ∧ evaln (k + 1) cf a = some x
⊢ ∃ a ∈ eval cg n, x ∈ eval cf a
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
|
rcases h with ⟨y, eg, ef⟩
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case comp.intro.intro.intro
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
left✝ : n ≤ k
y : ℕ
eg : evaln (k + 1) cg n = some y
ef : evaln (k + 1) cf y = some x
⊢ ∃ a ∈ eval cg n, x ∈ eval cf a
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
|
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case prec.intro
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
left✝ : n ≤ k
h :
Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
(unpair n).2 =
some x
⊢ x ∈
Nat.rec (eval cf (unpair n).1) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).1 (Nat.pair y i)))
(unpair n).2
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
|
revert h
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case prec.intro
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n x : ℕ
left✝ : n ≤ k
⊢ Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
(unpair n).2 =
some x →
x ∈
Nat.rec (eval cf (unpair n).1) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).1 (Nat.pair y i)))
(unpair n).2
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
|
induction' n.unpair.2 with m IH generalizing x
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case prec.intro.zero
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n : ℕ
left✝ : n ≤ k
x : ℕ
⊢ Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
Nat.zero =
some x →
x ∈
Nat.rec (eval cf (unpair n).1) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).1 (Nat.pair y i)))
Nat.zero
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;>
|
simp
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;>
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case prec.intro.succ
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n : ℕ
left✝ : n ≤ k
m : ℕ
IH :
∀ (x : ℕ),
Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
m =
some x →
x ∈
Nat.rec (eval cf (unpair n).1)
(fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).1 (Nat.pair y i))) m
x : ℕ
⊢ Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
(Nat.succ m) =
some x →
x ∈
Nat.rec (eval cf (unpair n).1) (fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).1 (Nat.pair y i)))
(Nat.succ m)
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;>
|
simp
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;>
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case prec.intro.zero
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n : ℕ
left✝ : n ≤ k
x : ℕ
⊢ evaln (k + 1) cf (unpair n).1 = some x → x ∈ eval cf (unpair n).1
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
·
|
apply hf
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
·
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case prec.intro.succ
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n : ℕ
left✝ : n ≤ k
m : ℕ
IH :
∀ (x : ℕ),
Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
m =
some x →
x ∈
Nat.rec (eval cf (unpair n).1)
(fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).1 (Nat.pair y i))) m
x : ℕ
⊢ ∀ (x_1 : ℕ),
evaln k (prec cf cg) (Nat.pair (unpair n).1 m) = some x_1 →
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair m x_1)) = some x →
∃
a ∈
Nat.rec (eval cf (unpair n).1)
(fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).1 (Nat.pair y i))) m,
x ∈ eval cg (Nat.pair (unpair n).1 (Nat.pair m a))
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
·
|
refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
·
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case prec.intro.succ.refine'_1
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n : ℕ
left✝ : n ≤ k
m : ℕ
IH :
∀ (x : ℕ),
Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
m =
some x →
x ∈
Nat.rec (eval cf (unpair n).1)
(fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).1 (Nat.pair y i))) m
x y : ℕ
h₁ : evaln k (prec cf cg) (Nat.pair (unpair n).1 m) = some y
h₂ : evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair m y)) = some x
⊢ Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
m =
some y
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
·
|
have := evaln_mono k.le_succ h₁
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
·
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case prec.intro.succ.refine'_1
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n : ℕ
left✝ : n ≤ k
m : ℕ
IH :
∀ (x : ℕ),
Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
m =
some x →
x ∈
Nat.rec (eval cf (unpair n).1)
(fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).1 (Nat.pair y i))) m
x y : ℕ
h₁ : evaln k (prec cf cg) (Nat.pair (unpair n).1 m) = some y
h₂ : evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair m y)) = some x
this : y ∈ evaln (Nat.succ k) (prec cf cg) (Nat.pair (unpair n).1 m)
⊢ Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
m =
some y
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
|
simp [evaln, Bind.bind] at this
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case prec.intro.succ.refine'_1
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n : ℕ
left✝ : n ≤ k
m : ℕ
IH :
∀ (x : ℕ),
Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
m =
some x →
x ∈
Nat.rec (eval cf (unpair n).1)
(fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).1 (Nat.pair y i))) m
x y : ℕ
h₁ : evaln k (prec cf cg) (Nat.pair (unpair n).1 m) = some y
h₂ : evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair m y)) = some x
this :
Nat.pair (unpair n).1 m ≤ k ∧
Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
m =
some y
⊢ Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
m =
some y
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
|
exact this.2
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case prec.intro.succ.refine'_2
k : ℕ
cf cg : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
hg : ∀ (n x : ℕ), x ∈ evaln (k + 1) cg n → x ∈ eval cg n
n : ℕ
left✝ : n ≤ k
m : ℕ
IH :
∀ (x : ℕ),
Nat.rec (evaln (k + 1) cf (unpair n).1)
(fun n_1 n_ih =>
Option.bind (evaln k (prec cf cg) (Nat.pair (unpair n).1 n_1)) fun i =>
evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair n_1 i)))
m =
some x →
x ∈
Nat.rec (eval cf (unpair n).1)
(fun y IH => Part.bind IH fun i => eval cg (Nat.pair (unpair n).1 (Nat.pair y i))) m
x y : ℕ
h₁ : evaln k (prec cf cg) (Nat.pair (unpair n).1 m) = some y
h₂ : evaln (k + 1) cg (Nat.pair (unpair n).1 (Nat.pair m y)) = some x
⊢ x ∈ eval cg (Nat.pair (unpair n).1 (Nat.pair m y))
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
·
|
exact hg _ _ h₂
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
·
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case rfind'.intro
k : ℕ
cf : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
n x : ℕ
left✝ : n ≤ k
h :
∃ a,
evaln (k + 1) cf n = some a ∧
(if a = 0 then pure (unpair n).2 else evaln k (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1))) = some x
⊢ ∃ a,
(0 ∈ eval cf (Nat.pair (unpair n).1 (a + (unpair n).2)) ∧
∀ {m : ℕ}, m < a → ∃ a ∈ eval cf (Nat.pair (unpair n).1 (m + (unpair n).2)), ¬a = 0) ∧
a + (unpair n).2 = x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
|
rcases h with ⟨m, h₁, h₂⟩
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case rfind'.intro.intro.intro
k : ℕ
cf : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
n x : ℕ
left✝ : n ≤ k
m : ℕ
h₁ : evaln (k + 1) cf n = some m
h₂ : (if m = 0 then pure (unpair n).2 else evaln k (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1))) = some x
⊢ ∃ a,
(0 ∈ eval cf (Nat.pair (unpair n).1 (a + (unpair n).2)) ∧
∀ {m : ℕ}, m < a → ∃ a ∈ eval cf (Nat.pair (unpair n).1 (m + (unpair n).2)), ¬a = 0) ∧
a + (unpair n).2 = x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
rcases h with ⟨m, h₁, h₂⟩
|
by_cases m0 : m = 0
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
rcases h with ⟨m, h₁, h₂⟩
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case pos
k : ℕ
cf : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
n x : ℕ
left✝ : n ≤ k
m : ℕ
h₁ : evaln (k + 1) cf n = some m
h₂ : (if m = 0 then pure (unpair n).2 else evaln k (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1))) = some x
m0 : m = 0
⊢ ∃ a,
(0 ∈ eval cf (Nat.pair (unpair n).1 (a + (unpair n).2)) ∧
∀ {m : ℕ}, m < a → ∃ a ∈ eval cf (Nat.pair (unpair n).1 (m + (unpair n).2)), ¬a = 0) ∧
a + (unpair n).2 = x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
rcases h with ⟨m, h₁, h₂⟩
by_cases m0 : m = 0 <;>
|
simp [m0] at h₂
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
rcases h with ⟨m, h₁, h₂⟩
by_cases m0 : m = 0 <;>
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case neg
k : ℕ
cf : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
n x : ℕ
left✝ : n ≤ k
m : ℕ
h₁ : evaln (k + 1) cf n = some m
h₂ : (if m = 0 then pure (unpair n).2 else evaln k (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1))) = some x
m0 : ¬m = 0
⊢ ∃ a,
(0 ∈ eval cf (Nat.pair (unpair n).1 (a + (unpair n).2)) ∧
∀ {m : ℕ}, m < a → ∃ a ∈ eval cf (Nat.pair (unpair n).1 (m + (unpair n).2)), ¬a = 0) ∧
a + (unpair n).2 = x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
rcases h with ⟨m, h₁, h₂⟩
by_cases m0 : m = 0 <;>
|
simp [m0] at h₂
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
rcases h with ⟨m, h₁, h₂⟩
by_cases m0 : m = 0 <;>
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case pos
k : ℕ
cf : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
n x : ℕ
left✝ : n ≤ k
m : ℕ
h₁ : evaln (k + 1) cf n = some m
m0 : m = 0
h₂ : pure (unpair n).2 = some x
⊢ ∃ a,
(0 ∈ eval cf (Nat.pair (unpair n).1 (a + (unpair n).2)) ∧
∀ {m : ℕ}, m < a → ∃ a ∈ eval cf (Nat.pair (unpair n).1 (m + (unpair n).2)), ¬a = 0) ∧
a + (unpair n).2 = x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
rcases h with ⟨m, h₁, h₂⟩
by_cases m0 : m = 0 <;> simp [m0] at h₂
·
|
exact
⟨0, ⟨by simpa [m0] using hf _ _ h₁, fun {m} => (Nat.not_lt_zero _).elim⟩, by
injection h₂ with h₂; simp [h₂]⟩
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
rcases h with ⟨m, h₁, h₂⟩
by_cases m0 : m = 0 <;> simp [m0] at h₂
·
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
k : ℕ
cf : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
n x : ℕ
left✝ : n ≤ k
m : ℕ
h₁ : evaln (k + 1) cf n = some m
m0 : m = 0
h₂ : pure (unpair n).2 = some x
⊢ 0 ∈ eval cf (Nat.pair (unpair n).1 (0 + (unpair n).2))
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
rcases h with ⟨m, h₁, h₂⟩
by_cases m0 : m = 0 <;> simp [m0] at h₂
· exact
⟨0, ⟨by
|
simpa [m0] using hf _ _ h₁
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
rcases h with ⟨m, h₁, h₂⟩
by_cases m0 : m = 0 <;> simp [m0] at h₂
· exact
⟨0, ⟨by
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
k : ℕ
cf : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
n x : ℕ
left✝ : n ≤ k
m : ℕ
h₁ : evaln (k + 1) cf n = some m
m0 : m = 0
h₂ : pure (unpair n).2 = some x
⊢ 0 + (unpair n).2 = x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
rcases h with ⟨m, h₁, h₂⟩
by_cases m0 : m = 0 <;> simp [m0] at h₂
· exact
⟨0, ⟨by simpa [m0] using hf _ _ h₁, fun {m} => (Nat.not_lt_zero _).elim⟩, by
|
injection h₂ with h₂
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
rcases h with ⟨m, h₁, h₂⟩
by_cases m0 : m = 0 <;> simp [m0] at h₂
· exact
⟨0, ⟨by simpa [m0] using hf _ _ h₁, fun {m} => (Nat.not_lt_zero _).elim⟩, by
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
k : ℕ
cf : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
n x : ℕ
left✝ : n ≤ k
m : ℕ
h₁ : evaln (k + 1) cf n = some m
m0 : m = 0
h₂ : (unpair n).2 = x
⊢ 0 + (unpair n).2 = x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
rcases h with ⟨m, h₁, h₂⟩
by_cases m0 : m = 0 <;> simp [m0] at h₂
· exact
⟨0, ⟨by simpa [m0] using hf _ _ h₁, fun {m} => (Nat.not_lt_zero _).elim⟩, by
injection h₂ with h₂;
|
simp [h₂]
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
rcases h with ⟨m, h₁, h₂⟩
by_cases m0 : m = 0 <;> simp [m0] at h₂
· exact
⟨0, ⟨by simpa [m0] using hf _ _ h₁, fun {m} => (Nat.not_lt_zero _).elim⟩, by
injection h₂ with h₂;
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case neg
k : ℕ
cf : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
n x : ℕ
left✝ : n ≤ k
m : ℕ
h₁ : evaln (k + 1) cf n = some m
m0 : ¬m = 0
h₂ : evaln k (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1)) = some x
⊢ ∃ a,
(0 ∈ eval cf (Nat.pair (unpair n).1 (a + (unpair n).2)) ∧
∀ {m : ℕ}, m < a → ∃ a ∈ eval cf (Nat.pair (unpair n).1 (m + (unpair n).2)), ¬a = 0) ∧
a + (unpair n).2 = x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
rcases h with ⟨m, h₁, h₂⟩
by_cases m0 : m = 0 <;> simp [m0] at h₂
· exact
⟨0, ⟨by simpa [m0] using hf _ _ h₁, fun {m} => (Nat.not_lt_zero _).elim⟩, by
injection h₂ with h₂; simp [h₂]⟩
·
|
have := evaln_sound h₂
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
rcases h with ⟨m, h₁, h₂⟩
by_cases m0 : m = 0 <;> simp [m0] at h₂
· exact
⟨0, ⟨by simpa [m0] using hf _ _ h₁, fun {m} => (Nat.not_lt_zero _).elim⟩, by
injection h₂ with h₂; simp [h₂]⟩
·
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case neg
k : ℕ
cf : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
n x : ℕ
left✝ : n ≤ k
m : ℕ
h₁ : evaln (k + 1) cf n = some m
m0 : ¬m = 0
h₂ : evaln k (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1)) = some x
this : x ∈ eval (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1))
⊢ ∃ a,
(0 ∈ eval cf (Nat.pair (unpair n).1 (a + (unpair n).2)) ∧
∀ {m : ℕ}, m < a → ∃ a ∈ eval cf (Nat.pair (unpair n).1 (m + (unpair n).2)), ¬a = 0) ∧
a + (unpair n).2 = x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
rcases h with ⟨m, h₁, h₂⟩
by_cases m0 : m = 0 <;> simp [m0] at h₂
· exact
⟨0, ⟨by simpa [m0] using hf _ _ h₁, fun {m} => (Nat.not_lt_zero _).elim⟩, by
injection h₂ with h₂; simp [h₂]⟩
· have := evaln_sound h₂
|
simp [eval] at this
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
rcases h with ⟨m, h₁, h₂⟩
by_cases m0 : m = 0 <;> simp [m0] at h₂
· exact
⟨0, ⟨by simpa [m0] using hf _ _ h₁, fun {m} => (Nat.not_lt_zero _).elim⟩, by
injection h₂ with h₂; simp [h₂]⟩
· have := evaln_sound h₂
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case neg
k : ℕ
cf : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
n x : ℕ
left✝ : n ≤ k
m : ℕ
h₁ : evaln (k + 1) cf n = some m
m0 : ¬m = 0
h₂ : evaln k (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1)) = some x
this :
∃ a,
(0 ∈ eval cf (Nat.pair (unpair n).1 (a + ((unpair n).2 + 1))) ∧
∀ {m : ℕ}, m < a → ∃ a ∈ eval cf (Nat.pair (unpair n).1 (m + ((unpair n).2 + 1))), ¬a = 0) ∧
a + ((unpair n).2 + 1) = x
⊢ ∃ a,
(0 ∈ eval cf (Nat.pair (unpair n).1 (a + (unpair n).2)) ∧
∀ {m : ℕ}, m < a → ∃ a ∈ eval cf (Nat.pair (unpair n).1 (m + (unpair n).2)), ¬a = 0) ∧
a + (unpair n).2 = x
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
rcases h with ⟨m, h₁, h₂⟩
by_cases m0 : m = 0 <;> simp [m0] at h₂
· exact
⟨0, ⟨by simpa [m0] using hf _ _ h₁, fun {m} => (Nat.not_lt_zero _).elim⟩, by
injection h₂ with h₂; simp [h₂]⟩
· have := evaln_sound h₂
simp [eval] at this
|
rcases this with ⟨y, ⟨hy₁, hy₂⟩, rfl⟩
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
rcases h with ⟨m, h₁, h₂⟩
by_cases m0 : m = 0 <;> simp [m0] at h₂
· exact
⟨0, ⟨by simpa [m0] using hf _ _ h₁, fun {m} => (Nat.not_lt_zero _).elim⟩, by
injection h₂ with h₂; simp [h₂]⟩
· have := evaln_sound h₂
simp [eval] at this
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
case neg.intro.intro.intro
k : ℕ
cf : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
n : ℕ
left✝ : n ≤ k
m : ℕ
h₁ : evaln (k + 1) cf n = some m
m0 : ¬m = 0
y : ℕ
hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).1 (y + ((unpair n).2 + 1)))
hy₂ : ∀ {m : ℕ}, m < y → ∃ a ∈ eval cf (Nat.pair (unpair n).1 (m + ((unpair n).2 + 1))), ¬a = 0
h₂ : evaln k (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1)) = some (y + ((unpair n).2 + 1))
⊢ ∃ a,
(0 ∈ eval cf (Nat.pair (unpair n).1 (a + (unpair n).2)) ∧
∀ {m : ℕ}, m < a → ∃ a ∈ eval cf (Nat.pair (unpair n).1 (m + (unpair n).2)), ¬a = 0) ∧
a + (unpair n).2 = y + ((unpair n).2 + 1)
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
rcases h with ⟨m, h₁, h₂⟩
by_cases m0 : m = 0 <;> simp [m0] at h₂
· exact
⟨0, ⟨by simpa [m0] using hf _ _ h₁, fun {m} => (Nat.not_lt_zero _).elim⟩, by
injection h₂ with h₂; simp [h₂]⟩
· have := evaln_sound h₂
simp [eval] at this
rcases this with ⟨y, ⟨hy₁, hy₂⟩, rfl⟩
|
refine'
⟨y + 1, ⟨by simpa [add_comm, add_left_comm] using hy₁, fun {i} im => _⟩, by
simp [add_comm, add_left_comm]⟩
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
rcases h with ⟨m, h₁, h₂⟩
by_cases m0 : m = 0 <;> simp [m0] at h₂
· exact
⟨0, ⟨by simpa [m0] using hf _ _ h₁, fun {m} => (Nat.not_lt_zero _).elim⟩, by
injection h₂ with h₂; simp [h₂]⟩
· have := evaln_sound h₂
simp [eval] at this
rcases this with ⟨y, ⟨hy₁, hy₂⟩, rfl⟩
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
k : ℕ
cf : Code
hf : ∀ (n x : ℕ), x ∈ evaln (k + 1) cf n → x ∈ eval cf n
n : ℕ
left✝ : n ≤ k
m : ℕ
h₁ : evaln (k + 1) cf n = some m
m0 : ¬m = 0
y : ℕ
hy₁ : 0 ∈ eval cf (Nat.pair (unpair n).1 (y + ((unpair n).2 + 1)))
hy₂ : ∀ {m : ℕ}, m < y → ∃ a ∈ eval cf (Nat.pair (unpair n).1 (m + ((unpair n).2 + 1))), ¬a = 0
h₂ : evaln k (rfind' cf) (Nat.pair (unpair n).1 ((unpair n).2 + 1)) = some (y + ((unpair n).2 + 1))
⊢ 0 ∈ eval cf (Nat.pair (unpair n).1 (y + 1 + (unpair n).2))
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Computability.Partrec
#align_import computability.partrec_code from "leanprover-community/mathlib"@"6155d4351090a6fad236e3d2e4e0e4e7342668e8"
/-!
# Gödel Numbering for Partial Recursive Functions.
This file defines `Nat.Partrec.Code`, an inductive datatype describing code for partial
recursive functions on ℕ. It defines an encoding for these codes, and proves that the constructors
are primitive recursive with respect to the encoding.
It also defines the evaluation of these codes as partial functions using `PFun`, and proves that a
function is partially recursive (as defined by `Nat.Partrec`) if and only if it is the evaluation
of some code.
## Main Definitions
* `Nat.Partrec.Code`: Inductive datatype for partial recursive codes.
* `Nat.Partrec.Code.encodeCode`: A (computable) encoding of codes as natural numbers.
* `Nat.Partrec.Code.ofNatCode`: The inverse of this encoding.
* `Nat.Partrec.Code.eval`: The interpretation of a `Nat.Partrec.Code` as a partial function.
## Main Results
* `Nat.Partrec.Code.rec_prim`: Recursion on `Nat.Partrec.Code` is primitive recursive.
* `Nat.Partrec.Code.rec_computable`: Recursion on `Nat.Partrec.Code` is computable.
* `Nat.Partrec.Code.smn`: The $S_n^m$ theorem.
* `Nat.Partrec.Code.exists_code`: Partial recursiveness is equivalent to being the eval of a code.
* `Nat.Partrec.Code.evaln_prim`: `evaln` is primitive recursive.
* `Nat.Partrec.Code.fixed_point`: Roger's fixed point theorem.
## References
* [Mario Carneiro, *Formalizing computability theory via partial recursive functions*][carneiro2019]
-/
open Encodable Denumerable Primrec
namespace Nat.Partrec
open Nat (pair)
theorem rfind' {f} (hf : Nat.Partrec f) :
Nat.Partrec
(Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + m))).map (· + m)) :=
Partrec₂.unpaired'.2 <| by
refine'
Partrec.map
((@Partrec₂.unpaired' fun a b : ℕ =>
Nat.rfind fun n => (fun m => m = 0) <$> f (Nat.pair a (n + b))).1
_)
(Primrec.nat_add.comp Primrec.snd <| Primrec.snd.comp Primrec.fst).to_comp.to₂
have : Nat.Partrec (fun a => Nat.rfind (fun n => (fun m => decide (m = 0)) <$>
Nat.unpaired (fun a b => f (Nat.pair (Nat.unpair a).1 (b + (Nat.unpair a).2)))
(Nat.pair a n))) :=
rfind
(Partrec₂.unpaired'.2
((Partrec.nat_iff.2 hf).comp
(Primrec₂.pair.comp (Primrec.fst.comp <| Primrec.unpair.comp Primrec.fst)
(Primrec.nat_add.comp Primrec.snd
(Primrec.snd.comp <| Primrec.unpair.comp Primrec.fst))).to_comp))
simp at this; exact this
#align nat.partrec.rfind' Nat.Partrec.rfind'
/-- Code for partial recursive functions from ℕ to ℕ.
See `Nat.Partrec.Code.eval` for the interpretation of these constructors.
-/
inductive Code : Type
| zero : Code
| succ : Code
| left : Code
| right : Code
| pair : Code → Code → Code
| comp : Code → Code → Code
| prec : Code → Code → Code
| rfind' : Code → Code
#align nat.partrec.code Nat.Partrec.Code
-- Porting note: `Nat.Partrec.Code.recOn` is noncomputable in Lean4, so we make it computable.
compile_inductive% Code
end Nat.Partrec
namespace Nat.Partrec.Code
open Nat (pair unpair)
open Nat.Partrec (Code)
instance instInhabited : Inhabited Code :=
⟨zero⟩
#align nat.partrec.code.inhabited Nat.Partrec.Code.instInhabited
/-- Returns a code for the constant function outputting a particular natural. -/
protected def const : ℕ → Code
| 0 => zero
| n + 1 => comp succ (Code.const n)
#align nat.partrec.code.const Nat.Partrec.Code.const
theorem const_inj : ∀ {n₁ n₂}, Nat.Partrec.Code.const n₁ = Nat.Partrec.Code.const n₂ → n₁ = n₂
| 0, 0, _ => by simp
| n₁ + 1, n₂ + 1, h => by
dsimp [Nat.add_one, Nat.Partrec.Code.const] at h
injection h with h₁ h₂
simp only [const_inj h₂]
#align nat.partrec.code.const_inj Nat.Partrec.Code.const_inj
/-- A code for the identity function. -/
protected def id : Code :=
pair left right
#align nat.partrec.code.id Nat.Partrec.Code.id
/-- Given a code `c` taking a pair as input, returns a code using `n` as the first argument to `c`.
-/
def curry (c : Code) (n : ℕ) : Code :=
comp c (pair (Code.const n) Code.id)
#align nat.partrec.code.curry Nat.Partrec.Code.curry
-- Porting note: `bit0` and `bit1` are deprecated.
/-- An encoding of a `Nat.Partrec.Code` as a ℕ. -/
def encodeCode : Code → ℕ
| zero => 0
| succ => 1
| left => 2
| right => 3
| pair cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 4
| comp cf cg => 2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg) + 1) + 4
| prec cf cg => (2 * (2 * Nat.pair (encodeCode cf) (encodeCode cg)) + 1) + 4
| rfind' cf => (2 * (2 * encodeCode cf + 1) + 1) + 4
#align nat.partrec.code.encode_code Nat.Partrec.Code.encodeCode
/--
A decoder for `Nat.Partrec.Code.encodeCode`, taking any ℕ to the `Nat.Partrec.Code` it represents.
-/
def ofNatCode : ℕ → Code
| 0 => zero
| 1 => succ
| 2 => left
| 3 => right
| n + 4 =>
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
match n.bodd, n.div2.bodd with
| false, false => pair (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| false, true => comp (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , false => prec (ofNatCode m.unpair.1) (ofNatCode m.unpair.2)
| true , true => rfind' (ofNatCode m)
#align nat.partrec.code.of_nat_code Nat.Partrec.Code.ofNatCode
/-- Proof that `Nat.Partrec.Code.ofNatCode` is the inverse of `Nat.Partrec.Code.encodeCode`-/
private theorem encode_ofNatCode : ∀ n, encodeCode (ofNatCode n) = n
| 0 => by simp [ofNatCode, encodeCode]
| 1 => by simp [ofNatCode, encodeCode]
| 2 => by simp [ofNatCode, encodeCode]
| 3 => by simp [ofNatCode, encodeCode]
| n + 4 => by
let m := n.div2.div2
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have _m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have _m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
have IH := encode_ofNatCode m
have IH1 := encode_ofNatCode m.unpair.1
have IH2 := encode_ofNatCode m.unpair.2
conv_rhs => rw [← Nat.bit_decomp n, ← Nat.bit_decomp n.div2]
simp only [ofNatCode._eq_5]
cases n.bodd <;> cases n.div2.bodd <;>
simp [encodeCode, ofNatCode, IH, IH1, IH2, Nat.bit_val]
instance instDenumerable : Denumerable Code :=
mk'
⟨encodeCode, ofNatCode, fun c => by
induction c <;> try {rfl} <;> simp [encodeCode, ofNatCode, Nat.div2_val, *],
encode_ofNatCode⟩
#align nat.partrec.code.denumerable Nat.Partrec.Code.instDenumerable
theorem encodeCode_eq : encode = encodeCode :=
rfl
#align nat.partrec.code.encode_code_eq Nat.Partrec.Code.encodeCode_eq
theorem ofNatCode_eq : ofNat Code = ofNatCode :=
rfl
#align nat.partrec.code.of_nat_code_eq Nat.Partrec.Code.ofNatCode_eq
theorem encode_lt_pair (cf cg) :
encode cf < encode (pair cf cg) ∧ encode cg < encode (pair cf cg) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right (Nat.pair cf.encodeCode cg.encodeCode) (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
have := lt_of_le_of_lt this (lt_add_of_pos_right _ (by decide : 0 < 4))
exact ⟨lt_of_le_of_lt (Nat.left_le_pair _ _) this, lt_of_le_of_lt (Nat.right_le_pair _ _) this⟩
#align nat.partrec.code.encode_lt_pair Nat.Partrec.Code.encode_lt_pair
theorem encode_lt_comp (cf cg) :
encode cf < encode (comp cf cg) ∧ encode cg < encode (comp cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_comp Nat.Partrec.Code.encode_lt_comp
theorem encode_lt_prec (cf cg) :
encode cf < encode (prec cf cg) ∧ encode cg < encode (prec cf cg) := by
suffices; exact (encode_lt_pair cf cg).imp (fun h => lt_trans h this) fun h => lt_trans h this
change _; simp [encodeCode_eq, encodeCode]
#align nat.partrec.code.encode_lt_prec Nat.Partrec.Code.encode_lt_prec
theorem encode_lt_rfind' (cf) : encode cf < encode (rfind' cf) := by
simp only [encodeCode_eq, encodeCode]
have := Nat.mul_le_mul_right cf.encodeCode (by decide : 1 ≤ 2 * 2)
rw [one_mul, mul_assoc] at this
refine' lt_of_le_of_lt (le_trans this _) (lt_add_of_pos_right _ (by decide : 0 < 4))
exact le_of_lt (Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_of_lt <|
Nat.lt_succ_of_le <| Nat.mul_le_mul_left _ <| le_rfl)
#align nat.partrec.code.encode_lt_rfind' Nat.Partrec.Code.encode_lt_rfind'
section
theorem pair_prim : Primrec₂ pair :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.pair_prim Nat.Partrec.Code.pair_prim
theorem comp_prim : Primrec₂ comp :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double.comp <|
nat_double_succ.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.comp_prim Nat.Partrec.Code.comp_prim
theorem prec_prim : Primrec₂ prec :=
Primrec₂.ofNat_iff.2 <|
Primrec₂.encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <|
nat_double.comp <|
Primrec₂.natPair.comp (encode_iff.2 <| (Primrec.ofNat Code).comp fst)
(encode_iff.2 <| (Primrec.ofNat Code).comp snd))
(Primrec₂.const 4)
#align nat.partrec.code.prec_prim Nat.Partrec.Code.prec_prim
theorem rfind_prim : Primrec rfind' :=
ofNat_iff.2 <|
encode_iff.1 <|
nat_add.comp
(nat_double_succ.comp <| nat_double_succ.comp <|
encode_iff.2 <| Primrec.ofNat Code)
(const 4)
#align nat.partrec.code.rfind_prim Nat.Partrec.Code.rfind_prim
theorem rec_prim' {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code × Code × σ × σ → σ} (hpr : Primrec₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Primrec₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Primrec₂ pc) {rf : α → Code × σ → σ} (hrf : Primrec₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Primrec (fun a => F a (c a) : α → σ) := by
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Primrec.unpair.comp (snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond (hrf.comp a (((Primrec.ofNat Code).comp m).pair s))
(hpc.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Primrec.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn
(list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim' Nat.Partrec.Code.rec_prim'
/-- Recursion on `Nat.Partrec.Code` is primitive recursive. -/
theorem rec_prim {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Primrec c) {z : α → σ}
(hz : Primrec z) {s : α → σ} (hs : Primrec s) {l : α → σ} (hl : Primrec l) {r : α → σ}
(hr : Primrec r) {pr : α → Code → Code → σ → σ → σ}
(hpr : Primrec fun a : α × Code × Code × σ × σ => pr a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{co : α → Code → Code → σ → σ → σ}
(hco : Primrec fun a : α × Code × Code × σ × σ => co a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{pc : α → Code → Code → σ → σ → σ}
(hpc : Primrec fun a : α × Code × Code × σ × σ => pc a.1 a.2.1 a.2.2.1 a.2.2.2.1 a.2.2.2.2)
{rf : α → Code → σ → σ} (hrf : Primrec fun a : α × Code × σ => rf a.1 a.2.1 a.2.2) :
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (pr a) (co a) (pc a) (rf a)
Primrec fun a => F a (c a) := by
intros F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m) s)
(pc a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂)
(pr a (ofNat Code m.unpair.1) (ofNat Code m.unpair.2) s₁ s₂))
have : Primrec G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Primrec₂
refine' option_bind ((list_get?.comp (snd.comp fst) (fst.comp <| Primrec.unpair.comp
(snd.comp snd))).comp fst) _
unfold Primrec₂
refine'
option_map
((list_get?.comp (snd.comp fst) (snd.comp <| Primrec.unpair.comp (snd.comp snd))).comp <|
fst.comp fst)
_
have a : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Primrec.unpair.comp m)
have m₂ := snd.comp (Primrec.unpair.comp m)
have s : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Primrec (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
have h₁ := hrf.comp <| a.pair (((Primrec.ofNat Code).comp m).pair s)
have h₂ := hpc.comp <| a.pair (((Primrec.ofNat Code).comp m₁).pair <|
((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₃ := hco.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
have h₄ := hpr.comp <| a.pair
(((Primrec.ofNat Code).comp m₁).pair <| ((Primrec.ofNat Code).comp m₂).pair <| s₁.pair s₂)
unfold Primrec₂
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond h₁ h₂)
(cond (nat_bodd.comp <| nat_div2.comp n) h₃ h₄)
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Primrec₂ G := by
unfold Primrec₂
refine nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
refine nat_casesOn snd (option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst))) ?_
unfold Primrec₂
exact this.comp <|
((fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp
_root_.Primrec.id <| encode_iff.2 hc).of_eq
fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_prim Nat.Partrec.Code.rec_prim
end
section
open Computable
/-- Recursion on `Nat.Partrec.Code` is computable. -/
theorem rec_computable {α σ} [Primcodable α] [Primcodable σ] {c : α → Code} (hc : Computable c)
{z : α → σ} (hz : Computable z) {s : α → σ} (hs : Computable s) {l : α → σ} (hl : Computable l)
{r : α → σ} (hr : Computable r) {pr : α → Code × Code × σ × σ → σ} (hpr : Computable₂ pr)
{co : α → Code × Code × σ × σ → σ} (hco : Computable₂ co) {pc : α → Code × Code × σ × σ → σ}
(hpc : Computable₂ pc) {rf : α → Code × σ → σ} (hrf : Computable₂ rf) :
let PR (a) cf cg hf hg := pr a (cf, cg, hf, hg)
let CO (a) cf cg hf hg := co a (cf, cg, hf, hg)
let PC (a) cf cg hf hg := pc a (cf, cg, hf, hg)
let RF (a) cf hf := rf a (cf, hf)
let F (a : α) (c : Code) : σ :=
Nat.Partrec.Code.recOn c (z a) (s a) (l a) (r a) (PR a) (CO a) (PC a) (RF a)
Computable fun a => F a (c a) := by
-- TODO(Mario): less copy-paste from previous proof
intros _ _ _ _ F
let G₁ : (α × List σ) × ℕ × ℕ → Option σ := fun p =>
let a := p.1.1
let IH := p.1.2
let n := p.2.1
let m := p.2.2
(IH.get? m).bind fun s =>
(IH.get? m.unpair.1).bind fun s₁ =>
(IH.get? m.unpair.2).map fun s₂ =>
cond n.bodd
(cond n.div2.bodd (rf a (ofNat Code m, s))
(pc a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
(cond n.div2.bodd (co a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂))
(pr a (ofNat Code m.unpair.1, ofNat Code m.unpair.2, s₁, s₂)))
have : Computable G₁ := by
refine' option_bind (list_get?.comp (snd.comp fst) (snd.comp snd)) _
unfold Computable₂
refine'
option_bind
((list_get?.comp (snd.comp fst)
(fst.comp <| Computable.unpair.comp (snd.comp snd))).comp fst) _
unfold Computable₂
refine'
option_map
((list_get?.comp (snd.comp fst)
(snd.comp <| Computable.unpair.comp (snd.comp snd))).comp <| fst.comp fst) _
have a : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.1.1) :=
fst.comp (fst.comp <| fst.comp <| fst.comp fst)
have n : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.1) :=
fst.comp (snd.comp <| fst.comp <| fst.comp fst)
have m : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.1.2.2) :=
snd.comp (snd.comp <| fst.comp <| fst.comp fst)
have m₁ := fst.comp (Computable.unpair.comp m)
have m₂ := snd.comp (Computable.unpair.comp m)
have s : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.1.2) :=
snd.comp (fst.comp fst)
have s₁ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.1.2) :=
snd.comp fst
have s₂ : Computable (fun p : ((((α × List σ) × ℕ × ℕ) × σ) × σ) × σ => p.2) :=
snd
exact
(nat_bodd.comp n).cond
((nat_bodd.comp <| nat_div2.comp n).cond
(hrf.comp a (((Computable.ofNat Code).comp m).pair s))
(hpc.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
(Computable.cond (nat_bodd.comp <| nat_div2.comp n)
(hco.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂))
(hpr.comp a
(((Computable.ofNat Code).comp m₁).pair <|
((Computable.ofNat Code).comp m₂).pair <| s₁.pair s₂)))
let G : α → List σ → Option σ := fun a IH =>
IH.length.casesOn (some (z a)) fun n =>
n.casesOn (some (s a)) fun n =>
n.casesOn (some (l a)) fun n =>
n.casesOn (some (r a)) fun n => G₁ ((a, IH), n, n.div2.div2)
have : Computable₂ G :=
Computable.nat_casesOn (list_length.comp snd) (option_some_iff.2 (hz.comp fst)) <|
Computable.nat_casesOn snd (option_some_iff.2 (hs.comp (fst.comp fst))) <|
Computable.nat_casesOn snd (option_some_iff.2 (hl.comp (fst.comp <| fst.comp fst))) <|
Computable.nat_casesOn snd
(option_some_iff.2 (hr.comp (fst.comp <| fst.comp <| fst.comp fst)))
(this.comp <|
((Computable.fst.pair snd).comp <| fst.comp <| fst.comp <| fst.comp <| fst).pair <|
snd.pair <| nat_div2.comp <| nat_div2.comp snd)
refine'
((nat_strong_rec (fun a n => F a (ofNat Code n)) this.to₂ fun a n => _).comp Computable.id <|
encode_iff.2 hc).of_eq fun a => by simp
simp (config := { zeta := false })
iterate 4 cases' n with n; · simp (config := { zeta := false }) [ofNatCode_eq, ofNatCode]; rfl
simp only []
rw [List.length_map, List.length_range]
let m := n.div2.div2
show
G₁ ((a, (List.range (n + 4)).map fun n => F a (ofNat Code n)), n, m) =
some (F a (ofNat Code (n + 4)))
have hm : m < n + 4 := by
simp only [div2_val]
exact
lt_of_le_of_lt (le_trans (Nat.div_le_self _ _) (Nat.div_le_self _ _))
(Nat.succ_le_succ (Nat.le_add_right _ _))
have m1 : m.unpair.1 < n + 4 := lt_of_le_of_lt m.unpair_left_le hm
have m2 : m.unpair.2 < n + 4 := lt_of_le_of_lt m.unpair_right_le hm
simp [List.get?_map, List.get?_range, hm, m1, m2]
rw [show ofNat Code (n + 4) = ofNatCode (n + 4) from rfl]
simp [ofNatCode]
cases n.bodd <;> cases n.div2.bodd <;> rfl
#align nat.partrec.code.rec_computable Nat.Partrec.Code.rec_computable
end
/-- The interpretation of a `Nat.Partrec.Code` as a partial function.
* `Nat.Partrec.Code.zero`: The constant zero function.
* `Nat.Partrec.Code.succ`: The successor function.
* `Nat.Partrec.Code.left`: Left unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.right`: Right unpairing of a pair of ℕ (encoded by `Nat.pair`)
* `Nat.Partrec.Code.pair`: Pairs the outputs of argument codes using `Nat.pair`.
* `Nat.Partrec.Code.comp`: Composition of two argument codes.
* `Nat.Partrec.Code.prec`: Primitive recursion. Given an argument of the form `Nat.pair a n`:
* If `n = 0`, returns `eval cf a`.
* If `n = succ k`, returns `eval cg (pair a (pair k (eval (prec cf cg) (pair a k))))`
* `Nat.Partrec.Code.rfind'`: Minimization. For `f` an argument of the form `Nat.pair a m`,
`rfind' f m` returns the least `a` such that `f a m = 0`, if one exists and `f b m` terminates
for `b < a`
-/
def eval : Code → ℕ →. ℕ
| zero => pure 0
| succ => Nat.succ
| left => ↑fun n : ℕ => n.unpair.1
| right => ↑fun n : ℕ => n.unpair.2
| pair cf cg => fun n => Nat.pair <$> eval cf n <*> eval cg n
| comp cf cg => fun n => eval cg n >>= eval cf
| prec cf cg =>
Nat.unpaired fun a n =>
n.rec (eval cf a) fun y IH => do
let i ← IH
eval cg (Nat.pair a (Nat.pair y i))
| rfind' cf =>
Nat.unpaired fun a m =>
(Nat.rfind fun n => (fun m => m = 0) <$> eval cf (Nat.pair a (n + m))).map (· + m)
#align nat.partrec.code.eval Nat.Partrec.Code.eval
/-- Helper lemma for the evaluation of `prec` in the base case. -/
@[simp]
theorem eval_prec_zero (cf cg : Code) (a : ℕ) : eval (prec cf cg) (Nat.pair a 0) = eval cf a := by
rw [eval, Nat.unpaired, Nat.unpair_pair]
simp (config := { Lean.Meta.Simp.neutralConfig with proj := true }) only []
rw [Nat.rec_zero]
#align nat.partrec.code.eval_prec_zero Nat.Partrec.Code.eval_prec_zero
/-- Helper lemma for the evaluation of `prec` in the recursive case. -/
theorem eval_prec_succ (cf cg : Code) (a k : ℕ) :
eval (prec cf cg) (Nat.pair a (Nat.succ k)) =
do {let ih ← eval (prec cf cg) (Nat.pair a k); eval cg (Nat.pair a (Nat.pair k ih))} := by
rw [eval, Nat.unpaired, Part.bind_eq_bind, Nat.unpair_pair]
simp
#align nat.partrec.code.eval_prec_succ Nat.Partrec.Code.eval_prec_succ
instance : Membership (ℕ →. ℕ) Code :=
⟨fun f c => eval c = f⟩
@[simp]
theorem eval_const : ∀ n m, eval (Code.const n) m = Part.some n
| 0, m => rfl
| n + 1, m => by simp! [eval_const n m]
#align nat.partrec.code.eval_const Nat.Partrec.Code.eval_const
@[simp]
theorem eval_id (n) : eval Code.id n = Part.some n := by simp! [Seq.seq]
#align nat.partrec.code.eval_id Nat.Partrec.Code.eval_id
@[simp]
theorem eval_curry (c n x) : eval (curry c n) x = eval c (Nat.pair n x) := by simp! [Seq.seq]
#align nat.partrec.code.eval_curry Nat.Partrec.Code.eval_curry
theorem const_prim : Primrec Code.const :=
(_root_.Primrec.id.nat_iterate (_root_.Primrec.const zero)
(comp_prim.comp (_root_.Primrec.const succ) Primrec.snd).to₂).of_eq
fun n => by simp; induction n <;>
simp [*, Code.const, Function.iterate_succ', -Function.iterate_succ]
#align nat.partrec.code.const_prim Nat.Partrec.Code.const_prim
theorem curry_prim : Primrec₂ curry :=
comp_prim.comp Primrec.fst <| pair_prim.comp (const_prim.comp Primrec.snd)
(_root_.Primrec.const Code.id)
#align nat.partrec.code.curry_prim Nat.Partrec.Code.curry_prim
theorem curry_inj {c₁ c₂ n₁ n₂} (h : curry c₁ n₁ = curry c₂ n₂) : c₁ = c₂ ∧ n₁ = n₂ :=
⟨by injection h, by
injection h with h₁ h₂
injection h₂ with h₃ h₄
exact const_inj h₃⟩
#align nat.partrec.code.curry_inj Nat.Partrec.Code.curry_inj
/--
The $S_n^m$ theorem: There is a computable function, namely `Nat.Partrec.Code.curry`, that takes a
program and a ℕ `n`, and returns a new program using `n` as the first argument.
-/
theorem smn :
∃ f : Code → ℕ → Code, Computable₂ f ∧ ∀ c n x, eval (f c n) x = eval c (Nat.pair n x) :=
⟨curry, Primrec₂.to_comp curry_prim, eval_curry⟩
#align nat.partrec.code.smn Nat.Partrec.Code.smn
/-- A function is partial recursive if and only if there is a code implementing it. -/
theorem exists_code {f : ℕ →. ℕ} : Nat.Partrec f ↔ ∃ c : Code, eval c = f :=
⟨fun h => by
induction h
case zero => exact ⟨zero, rfl⟩
case succ => exact ⟨succ, rfl⟩
case left => exact ⟨left, rfl⟩
case right => exact ⟨right, rfl⟩
case pair f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨pair cf cg, rfl⟩
case comp f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨comp cf cg, rfl⟩
case prec f g pf pg hf hg =>
rcases hf with ⟨cf, rfl⟩; rcases hg with ⟨cg, rfl⟩
exact ⟨prec cf cg, rfl⟩
case rfind f pf hf =>
rcases hf with ⟨cf, rfl⟩
refine' ⟨comp (rfind' cf) (pair Code.id zero), _⟩
simp [eval, Seq.seq, pure, PFun.pure, Part.map_id'],
fun h => by
rcases h with ⟨c, rfl⟩; induction c
case zero => exact Nat.Partrec.zero
case succ => exact Nat.Partrec.succ
case left => exact Nat.Partrec.left
case right => exact Nat.Partrec.right
case pair cf cg pf pg => exact pf.pair pg
case comp cf cg pf pg => exact pf.comp pg
case prec cf cg pf pg => exact pf.prec pg
case rfind' cf pf => exact pf.rfind'⟩
#align nat.partrec.code.exists_code Nat.Partrec.Code.exists_code
-- Porting note: `>>`s in `evaln` are now `>>=` because `>>`s are not elaborated well in Lean4.
/-- A modified evaluation for the code which returns an `Option ℕ` instead of a `Part ℕ`. To avoid
undecidability, `evaln` takes a parameter `k` and fails if it encounters a number ≥ k in the course
of its execution. Other than this, the semantics are the same as in `Nat.Partrec.Code.eval`.
-/
def evaln : ℕ → Code → ℕ → Option ℕ
| 0, _ => fun _ => Option.none
| k + 1, zero => fun n => do
guard (n ≤ k)
return 0
| k + 1, succ => fun n => do
guard (n ≤ k)
return (Nat.succ n)
| k + 1, left => fun n => do
guard (n ≤ k)
return n.unpair.1
| k + 1, right => fun n => do
guard (n ≤ k)
pure n.unpair.2
| k + 1, pair cf cg => fun n => do
guard (n ≤ k)
Nat.pair <$> evaln (k + 1) cf n <*> evaln (k + 1) cg n
| k + 1, comp cf cg => fun n => do
guard (n ≤ k)
let x ← evaln (k + 1) cg n
evaln (k + 1) cf x
| k + 1, prec cf cg => fun n => do
guard (n ≤ k)
n.unpaired fun a n =>
n.casesOn (evaln (k + 1) cf a) fun y => do
let i ← evaln k (prec cf cg) (Nat.pair a y)
evaln (k + 1) cg (Nat.pair a (Nat.pair y i))
| k + 1, rfind' cf => fun n => do
guard (n ≤ k)
n.unpaired fun a m => do
let x ← evaln (k + 1) cf (Nat.pair a m)
if x = 0 then
pure m
else
evaln k (rfind' cf) (Nat.pair a (m + 1))
termination_by evaln k c => (k, c)
decreasing_by { decreasing_with simp (config := { arith := true }) [Zero.zero]; done }
#align nat.partrec.code.evaln Nat.Partrec.Code.evaln
theorem evaln_bound : ∀ {k c n x}, x ∈ evaln k c n → n < k
| 0, c, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
suffices ∀ {o : Option ℕ}, x ∈ do { guard (n ≤ k); o } → n < k + 1 by
cases c <;> rw [evaln] at h <;> exact this h
simpa [Bind.bind] using Nat.lt_succ_of_le
#align nat.partrec.code.evaln_bound Nat.Partrec.Code.evaln_bound
theorem evaln_mono : ∀ {k₁ k₂ c n x}, k₁ ≤ k₂ → x ∈ evaln k₁ c n → x ∈ evaln k₂ c n
| 0, k₂, c, n, x, _, h => by simp [evaln] at h
| k + 1, k₂ + 1, c, n, x, hl, h => by
have hl' := Nat.le_of_succ_le_succ hl
have :
∀ {k k₂ n x : ℕ} {o₁ o₂ : Option ℕ},
k ≤ k₂ → (x ∈ o₁ → x ∈ o₂) →
x ∈ do { guard (n ≤ k); o₁ } → x ∈ do { guard (n ≤ k₂); o₂ } := by
simp only [Option.mem_def, bind, Option.bind_eq_some, Option.guard_eq_some', exists_and_left,
exists_const, and_imp]
introv h h₁ h₂ h₃
exact ⟨le_trans h₂ h, h₁ h₃⟩
simp? at h ⊢ says simp only [Option.mem_def] at h ⊢
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
rw [evaln] at h ⊢ <;> refine' this hl' (fun h => _) h
iterate 4 exact h
· -- pair cf cg
simp? [Seq.seq] at h ⊢ says
simp only [Seq.seq, Option.map_eq_map, Option.mem_def, Option.bind_eq_some,
Option.map_eq_some', exists_exists_and_eq_and] at h ⊢
exact h.imp fun a => And.imp (hf _ _) <| Exists.imp fun b => And.imp_left (hg _ _)
· -- comp cf cg
simp? [Bind.bind] at h ⊢ says simp only [bind, Option.mem_def, Option.bind_eq_some] at h ⊢
exact h.imp fun a => And.imp (hg _ _) (hf _ _)
· -- prec cf cg
revert h
simp only [unpaired, bind, Option.mem_def]
induction n.unpair.2 <;> simp
· apply hf
· exact fun y h₁ h₂ => ⟨y, evaln_mono hl' h₁, hg _ _ h₂⟩
· -- rfind' cf
simp? [Bind.bind] at h ⊢ says
simp only [unpaired, bind, pair_unpair, Option.mem_def, Option.bind_eq_some] at h ⊢
refine' h.imp fun x => And.imp (hf _ _) _
by_cases x0 : x = 0 <;> simp [x0]
exact evaln_mono hl'
#align nat.partrec.code.evaln_mono Nat.Partrec.Code.evaln_mono
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
rcases h with ⟨m, h₁, h₂⟩
by_cases m0 : m = 0 <;> simp [m0] at h₂
· exact
⟨0, ⟨by simpa [m0] using hf _ _ h₁, fun {m} => (Nat.not_lt_zero _).elim⟩, by
injection h₂ with h₂; simp [h₂]⟩
· have := evaln_sound h₂
simp [eval] at this
rcases this with ⟨y, ⟨hy₁, hy₂⟩, rfl⟩
refine'
⟨y + 1, ⟨by
|
simpa [add_comm, add_left_comm] using hy₁
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have := evaln_mono k.le_succ h₁
simp [evaln, Bind.bind] at this
exact this.2
· exact hg _ _ h₂
· -- rfind' cf
rcases h with ⟨m, h₁, h₂⟩
by_cases m0 : m = 0 <;> simp [m0] at h₂
· exact
⟨0, ⟨by simpa [m0] using hf _ _ h₁, fun {m} => (Nat.not_lt_zero _).elim⟩, by
injection h₂ with h₂; simp [h₂]⟩
· have := evaln_sound h₂
simp [eval] at this
rcases this with ⟨y, ⟨hy₁, hy₂⟩, rfl⟩
refine'
⟨y + 1, ⟨by
|
Mathlib.Computability.PartrecCode.821_0.A3c3Aev6SyIRjCJ
|
theorem evaln_sound : ∀ {k c n x}, x ∈ evaln k c n → x ∈ eval c n
| 0, _, n, x, h => by simp [evaln] at h
| k + 1, c, n, x, h => by
induction' c with cf cg hf hg cf cg hf hg cf cg hf hg cf hf generalizing x n <;>
simp [eval, evaln, Bind.bind, Seq.seq] at h ⊢ <;>
cases' h with _ h
iterate 4 simpa [pure, PFun.pure, eq_comm] using h
· -- pair cf cg
rcases h with ⟨y, ef, z, eg, rfl⟩
exact ⟨_, hf _ _ ef, _, hg _ _ eg, rfl⟩
· --comp hf hg
rcases h with ⟨y, eg, ef⟩
exact ⟨_, hg _ _ eg, hf _ _ ef⟩
· -- prec cf cg
revert h
induction' n.unpair.2 with m IH generalizing x <;> simp
· apply hf
· refine' fun y h₁ h₂ => ⟨y, IH _ _, _⟩
· have
|
Mathlib_Computability_PartrecCode
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.