state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
α : Type u_1 β : Type u_2 E : Type u_3 inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : MetricSpace β inst✝ : NormedAddCommGroup E f g : C(α, β) C : ℝ C0 : 0 < C ⊢ (∀ (x : α), dist ((mkOfCompact f) x) ((mkOfCompact g) x) < C) ↔ ∀ (x : α), dist (f x) (g x) < C
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0]
simp only [mkOfCompact_apply]
theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0]
Mathlib.Topology.ContinuousFunction.Compact.152_0.Mig2jTVnn2FLKEB
theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C
Mathlib_Topology_ContinuousFunction_Compact
α : Type u_1 β : Type u_2 E : Type u_3 inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : MetricSpace β inst✝ : NormedAddCommGroup E src✝¹ : MetricSpace C(α, E) := metricSpace α E src✝ : AddCommGroup C(α, E) := instAddCommGroupContinuousMap x y : C(α, E) ⊢ dist x y = ‖x - y‖
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by
rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub]
instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by
Mathlib.Topology.ContinuousFunction.Compact.185_0.Mig2jTVnn2FLKEB
instance : NormedAddCommGroup C(α, E)
Mathlib_Topology_ContinuousFunction_Compact
α : Type u_1 β : Type u_2 E : Type u_3 inst✝⁶ : TopologicalSpace α inst✝⁵ : CompactSpace α inst✝⁴ : MetricSpace β inst✝³ : NormedAddCommGroup E inst✝² : Nonempty α inst✝¹ : One E inst✝ : NormOneClass E ⊢ ‖1‖ = 1
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by
simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one]
instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by
Mathlib.Topology.ContinuousFunction.Compact.193_0.Mig2jTVnn2FLKEB
instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one
Mathlib_Topology_ContinuousFunction_Compact
α : Type u_1 β : Type u_2 E : Type u_3 inst✝⁵ : TopologicalSpace α inst✝⁴ : CompactSpace α inst✝³ : MetricSpace β inst✝² : NormedAddCommGroup E 𝕜 : Type u_4 inst✝¹ : NormedField 𝕜 inst✝ : NormedSpace 𝕜 E src✝ : C(α, E) ≃+ (α →ᵇ E) := addEquivBoundedOfCompact α E c : 𝕜 f : C(α, E) ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : C(α, E)), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } (c • f) = (RingHom.id 𝕜) c • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : C(α, E)), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } f
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by
ext
/-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by
Mathlib.Topology.ContinuousFunction.Compact.277_0.Mig2jTVnn2FLKEB
/-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E
Mathlib_Topology_ContinuousFunction_Compact
case h α : Type u_1 β : Type u_2 E : Type u_3 inst✝⁵ : TopologicalSpace α inst✝⁴ : CompactSpace α inst✝³ : MetricSpace β inst✝² : NormedAddCommGroup E 𝕜 : Type u_4 inst✝¹ : NormedField 𝕜 inst✝ : NormedSpace 𝕜 E src✝ : C(α, E) ≃+ (α →ᵇ E) := addEquivBoundedOfCompact α E c : 𝕜 f : C(α, E) x✝ : α ⊢ (AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : C(α, E)), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } (c • f)) x✝ = ((RingHom.id 𝕜) c • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : C(α, E)), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } f) x✝
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext
norm_cast
/-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext
Mathlib.Topology.ContinuousFunction.Compact.277_0.Mig2jTVnn2FLKEB
/-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E
Mathlib_Topology_ContinuousFunction_Compact
X : Type u_1 𝕜 : Type u_2 β : Type u_3 γ : Type u_4 inst✝⁶ : TopologicalSpace X inst✝⁵ : CompactSpace X inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup β inst✝² : NormedSpace 𝕜 β inst✝¹ : NormedAddCommGroup γ inst✝ : NormedSpace 𝕜 γ g : β →L[𝕜] γ ⊢ ↑(ContinuousLinearMap.compLeftContinuousCompact X g) = ContinuousLinearMap.compLeftContinuous 𝕜 X g
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by
ext f
@[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by
Mathlib.Topology.ContinuousFunction.Compact.406_0.Mig2jTVnn2FLKEB
@[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X
Mathlib_Topology_ContinuousFunction_Compact
case h.h X : Type u_1 𝕜 : Type u_2 β : Type u_3 γ : Type u_4 inst✝⁶ : TopologicalSpace X inst✝⁵ : CompactSpace X inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup β inst✝² : NormedSpace 𝕜 β inst✝¹ : NormedAddCommGroup γ inst✝ : NormedSpace 𝕜 γ g : β →L[𝕜] γ f : C(X, β) a✝ : X ⊢ (↑(ContinuousLinearMap.compLeftContinuousCompact X g) f) a✝ = ((ContinuousLinearMap.compLeftContinuous 𝕜 X g) f) a✝
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f
rfl
@[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f
Mathlib.Topology.ContinuousFunction.Compact.406_0.Mig2jTVnn2FLKEB
@[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X
Mathlib_Topology_ContinuousFunction_Compact
X : Type u_1 Y : Type u_2 T : Type u_3 inst✝⁴ : TopologicalSpace X inst✝³ : CompactSpace X inst✝² : TopologicalSpace Y inst✝¹ : CompactSpace Y inst✝ : MetricSpace T f : C(X, Y) ⊢ Continuous fun g => comp g f
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by
refine' Metric.continuous_iff.mpr _
/-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by
Mathlib.Topology.ContinuousFunction.Compact.437_0.Mig2jTVnn2FLKEB
/-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g
Mathlib_Topology_ContinuousFunction_Compact
X : Type u_1 Y : Type u_2 T : Type u_3 inst✝⁴ : TopologicalSpace X inst✝³ : CompactSpace X inst✝² : TopologicalSpace Y inst✝¹ : CompactSpace Y inst✝ : MetricSpace T f : C(X, Y) ⊢ ∀ (b : C(Y, T)), ∀ ε > 0, ∃ δ > 0, ∀ (a : C(Y, T)), dist a b < δ → dist (comp a f) (comp b f) < ε
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _
intro g ε ε_pos
/-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _
Mathlib.Topology.ContinuousFunction.Compact.437_0.Mig2jTVnn2FLKEB
/-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g
Mathlib_Topology_ContinuousFunction_Compact
X : Type u_1 Y : Type u_2 T : Type u_3 inst✝⁴ : TopologicalSpace X inst✝³ : CompactSpace X inst✝² : TopologicalSpace Y inst✝¹ : CompactSpace Y inst✝ : MetricSpace T f : C(X, Y) g : C(Y, T) ε : ℝ ε_pos : ε > 0 ⊢ ∃ δ > 0, ∀ (a : C(Y, T)), dist a g < δ → dist (comp a f) (comp g f) < ε
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos
refine' ⟨ε, ε_pos, fun g' h => _⟩
/-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos
Mathlib.Topology.ContinuousFunction.Compact.437_0.Mig2jTVnn2FLKEB
/-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g
Mathlib_Topology_ContinuousFunction_Compact
X : Type u_1 Y : Type u_2 T : Type u_3 inst✝⁴ : TopologicalSpace X inst✝³ : CompactSpace X inst✝² : TopologicalSpace Y inst✝¹ : CompactSpace Y inst✝ : MetricSpace T f : C(X, Y) g : C(Y, T) ε : ℝ ε_pos : ε > 0 g' : C(Y, T) h : dist g' g < ε ⊢ dist (comp g' f) (comp g f) < ε
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩
rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢
/-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩
Mathlib.Topology.ContinuousFunction.Compact.437_0.Mig2jTVnn2FLKEB
/-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g
Mathlib_Topology_ContinuousFunction_Compact
X : Type u_1 Y : Type u_2 T : Type u_3 inst✝⁴ : TopologicalSpace X inst✝³ : CompactSpace X inst✝² : TopologicalSpace Y inst✝¹ : CompactSpace Y inst✝ : MetricSpace T f : C(X, Y) g : C(Y, T) ε : ℝ ε_pos : ε > 0 g' : C(Y, T) h : ∀ (x : Y), dist (g' x) (g x) < ε ⊢ ∀ (x : X), dist ((comp g' f) x) ((comp g f) x) < ε
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢
exact fun x => h (f x)
/-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢
Mathlib.Topology.ContinuousFunction.Compact.437_0.Mig2jTVnn2FLKEB
/-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g
Mathlib_Topology_ContinuousFunction_Compact
X : Type u_1 inst✝⁴ : TopologicalSpace X inst✝³ : T2Space X inst✝² : LocallyCompactSpace X E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : CompleteSpace E ι : Type u_3 F : ι → C(X, E) hF : ∀ (K : Compacts X), Summable fun i => ‖restrict (↑K) (F i)‖ ⊢ Summable F
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢ exact fun x => h (f x) #align continuous_map.comp_right_continuous_map ContinuousMap.compRightContinuousMap @[simp] theorem compRightContinuousMap_apply {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) (g : C(Y, T)) : (compRightContinuousMap T f) g = g.comp f := rfl #align continuous_map.comp_right_continuous_map_apply ContinuousMap.compRightContinuousMap_apply /-- Precomposition by a homeomorphism is itself a homeomorphism between spaces of continuous maps. -/ def compRightHomeomorph {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : X ≃ₜ Y) : C(Y, T) ≃ₜ C(X, T) where toFun := compRightContinuousMap T f.toContinuousMap invFun := compRightContinuousMap T f.symm.toContinuousMap left_inv g := ext fun _ => congr_arg g (f.apply_symm_apply _) right_inv g := ext fun _ => congr_arg g (f.symm_apply_apply _) #align continuous_map.comp_right_homeomorph ContinuousMap.compRightHomeomorph theorem compRightAlgHom_continuous {X Y : Type*} (R A : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [CommSemiring R] [Semiring A] [MetricSpace A] [TopologicalSemiring A] [Algebra R A] (f : C(X, Y)) : Continuous (compRightAlgHom R A f) := map_continuous (compRightContinuousMap A f) #align continuous_map.comp_right_alg_hom_continuous ContinuousMap.compRightAlgHom_continuous end CompRight section LocalNormalConvergence /-! ### Local normal convergence A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of `C(X, E)` (i.e. locally uniform convergence). -/ open TopologicalSpace variable {X : Type*} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] variable {E : Type*} [NormedAddCommGroup E] [CompleteSpace E] theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by
refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _
theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by
Mathlib.Topology.ContinuousFunction.Compact.491_0.Mig2jTVnn2FLKEB
theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F
Mathlib_Topology_ContinuousFunction_Compact
X : Type u_1 inst✝⁴ : TopologicalSpace X inst✝³ : T2Space X inst✝² : LocallyCompactSpace X E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : CompleteSpace E ι : Type u_3 F : ι → C(X, E) hF : ∀ (K : Compacts X), Summable fun i => ‖restrict (↑K) (F i)‖ K : Set X hK : IsCompact K ⊢ ∃ f, Tendsto (fun i => restrict K (∑ b in i, F b)) atTop (𝓝 f)
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢ exact fun x => h (f x) #align continuous_map.comp_right_continuous_map ContinuousMap.compRightContinuousMap @[simp] theorem compRightContinuousMap_apply {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) (g : C(Y, T)) : (compRightContinuousMap T f) g = g.comp f := rfl #align continuous_map.comp_right_continuous_map_apply ContinuousMap.compRightContinuousMap_apply /-- Precomposition by a homeomorphism is itself a homeomorphism between spaces of continuous maps. -/ def compRightHomeomorph {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : X ≃ₜ Y) : C(Y, T) ≃ₜ C(X, T) where toFun := compRightContinuousMap T f.toContinuousMap invFun := compRightContinuousMap T f.symm.toContinuousMap left_inv g := ext fun _ => congr_arg g (f.apply_symm_apply _) right_inv g := ext fun _ => congr_arg g (f.symm_apply_apply _) #align continuous_map.comp_right_homeomorph ContinuousMap.compRightHomeomorph theorem compRightAlgHom_continuous {X Y : Type*} (R A : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [CommSemiring R] [Semiring A] [MetricSpace A] [TopologicalSemiring A] [Algebra R A] (f : C(X, Y)) : Continuous (compRightAlgHom R A f) := map_continuous (compRightContinuousMap A f) #align continuous_map.comp_right_alg_hom_continuous ContinuousMap.compRightAlgHom_continuous end CompRight section LocalNormalConvergence /-! ### Local normal convergence A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of `C(X, E)` (i.e. locally uniform convergence). -/ open TopologicalSpace variable {X : Type*} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] variable {E : Type*} [NormedAddCommGroup E] [CompleteSpace E] theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _
lift K to Compacts X using hK
theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _
Mathlib.Topology.ContinuousFunction.Compact.491_0.Mig2jTVnn2FLKEB
theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F
Mathlib_Topology_ContinuousFunction_Compact
case intro X : Type u_1 inst✝⁴ : TopologicalSpace X inst✝³ : T2Space X inst✝² : LocallyCompactSpace X E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : CompleteSpace E ι : Type u_3 F : ι → C(X, E) hF : ∀ (K : Compacts X), Summable fun i => ‖restrict (↑K) (F i)‖ K : Compacts X ⊢ ∃ f, Tendsto (fun i => restrict (↑K) (∑ b in i, F b)) atTop (𝓝 f)
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢ exact fun x => h (f x) #align continuous_map.comp_right_continuous_map ContinuousMap.compRightContinuousMap @[simp] theorem compRightContinuousMap_apply {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) (g : C(Y, T)) : (compRightContinuousMap T f) g = g.comp f := rfl #align continuous_map.comp_right_continuous_map_apply ContinuousMap.compRightContinuousMap_apply /-- Precomposition by a homeomorphism is itself a homeomorphism between spaces of continuous maps. -/ def compRightHomeomorph {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : X ≃ₜ Y) : C(Y, T) ≃ₜ C(X, T) where toFun := compRightContinuousMap T f.toContinuousMap invFun := compRightContinuousMap T f.symm.toContinuousMap left_inv g := ext fun _ => congr_arg g (f.apply_symm_apply _) right_inv g := ext fun _ => congr_arg g (f.symm_apply_apply _) #align continuous_map.comp_right_homeomorph ContinuousMap.compRightHomeomorph theorem compRightAlgHom_continuous {X Y : Type*} (R A : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [CommSemiring R] [Semiring A] [MetricSpace A] [TopologicalSemiring A] [Algebra R A] (f : C(X, Y)) : Continuous (compRightAlgHom R A f) := map_continuous (compRightContinuousMap A f) #align continuous_map.comp_right_alg_hom_continuous ContinuousMap.compRightAlgHom_continuous end CompRight section LocalNormalConvergence /-! ### Local normal convergence A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of `C(X, E)` (i.e. locally uniform convergence). -/ open TopologicalSpace variable {X : Type*} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] variable {E : Type*} [NormedAddCommGroup E] [CompleteSpace E] theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK
have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x simp -- This used to be the end of the proof before leanprover/lean4#2644 erw [restrict_apply, restrict_apply, restrict_apply, restrict_apply] simp? says simp only [coe_sum, Finset.sum_apply] congr!
theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK
Mathlib.Topology.ContinuousFunction.Compact.491_0.Mig2jTVnn2FLKEB
theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F
Mathlib_Topology_ContinuousFunction_Compact
X : Type u_1 inst✝⁴ : TopologicalSpace X inst✝³ : T2Space X inst✝² : LocallyCompactSpace X E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : CompleteSpace E ι : Type u_3 F : ι → C(X, E) hF : ∀ (K : Compacts X), Summable fun i => ‖restrict (↑K) (F i)‖ K : Compacts X ⊢ ∀ (s : Finset ι), restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict (↑K) (F i)
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢ exact fun x => h (f x) #align continuous_map.comp_right_continuous_map ContinuousMap.compRightContinuousMap @[simp] theorem compRightContinuousMap_apply {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) (g : C(Y, T)) : (compRightContinuousMap T f) g = g.comp f := rfl #align continuous_map.comp_right_continuous_map_apply ContinuousMap.compRightContinuousMap_apply /-- Precomposition by a homeomorphism is itself a homeomorphism between spaces of continuous maps. -/ def compRightHomeomorph {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : X ≃ₜ Y) : C(Y, T) ≃ₜ C(X, T) where toFun := compRightContinuousMap T f.toContinuousMap invFun := compRightContinuousMap T f.symm.toContinuousMap left_inv g := ext fun _ => congr_arg g (f.apply_symm_apply _) right_inv g := ext fun _ => congr_arg g (f.symm_apply_apply _) #align continuous_map.comp_right_homeomorph ContinuousMap.compRightHomeomorph theorem compRightAlgHom_continuous {X Y : Type*} (R A : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [CommSemiring R] [Semiring A] [MetricSpace A] [TopologicalSemiring A] [Algebra R A] (f : C(X, Y)) : Continuous (compRightAlgHom R A f) := map_continuous (compRightContinuousMap A f) #align continuous_map.comp_right_alg_hom_continuous ContinuousMap.compRightAlgHom_continuous end CompRight section LocalNormalConvergence /-! ### Local normal convergence A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of `C(X, E)` (i.e. locally uniform convergence). -/ open TopologicalSpace variable {X : Type*} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] variable {E : Type*} [NormedAddCommGroup E] [CompleteSpace E] theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by
intro s
theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by
Mathlib.Topology.ContinuousFunction.Compact.491_0.Mig2jTVnn2FLKEB
theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F
Mathlib_Topology_ContinuousFunction_Compact
X : Type u_1 inst✝⁴ : TopologicalSpace X inst✝³ : T2Space X inst✝² : LocallyCompactSpace X E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : CompleteSpace E ι : Type u_3 F : ι → C(X, E) hF : ∀ (K : Compacts X), Summable fun i => ‖restrict (↑K) (F i)‖ K : Compacts X s : Finset ι ⊢ restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict (↑K) (F i)
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢ exact fun x => h (f x) #align continuous_map.comp_right_continuous_map ContinuousMap.compRightContinuousMap @[simp] theorem compRightContinuousMap_apply {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) (g : C(Y, T)) : (compRightContinuousMap T f) g = g.comp f := rfl #align continuous_map.comp_right_continuous_map_apply ContinuousMap.compRightContinuousMap_apply /-- Precomposition by a homeomorphism is itself a homeomorphism between spaces of continuous maps. -/ def compRightHomeomorph {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : X ≃ₜ Y) : C(Y, T) ≃ₜ C(X, T) where toFun := compRightContinuousMap T f.toContinuousMap invFun := compRightContinuousMap T f.symm.toContinuousMap left_inv g := ext fun _ => congr_arg g (f.apply_symm_apply _) right_inv g := ext fun _ => congr_arg g (f.symm_apply_apply _) #align continuous_map.comp_right_homeomorph ContinuousMap.compRightHomeomorph theorem compRightAlgHom_continuous {X Y : Type*} (R A : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [CommSemiring R] [Semiring A] [MetricSpace A] [TopologicalSemiring A] [Algebra R A] (f : C(X, Y)) : Continuous (compRightAlgHom R A f) := map_continuous (compRightContinuousMap A f) #align continuous_map.comp_right_alg_hom_continuous ContinuousMap.compRightAlgHom_continuous end CompRight section LocalNormalConvergence /-! ### Local normal convergence A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of `C(X, E)` (i.e. locally uniform convergence). -/ open TopologicalSpace variable {X : Type*} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] variable {E : Type*} [NormedAddCommGroup E] [CompleteSpace E] theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s
ext1 x
theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s
Mathlib.Topology.ContinuousFunction.Compact.491_0.Mig2jTVnn2FLKEB
theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F
Mathlib_Topology_ContinuousFunction_Compact
case h X : Type u_1 inst✝⁴ : TopologicalSpace X inst✝³ : T2Space X inst✝² : LocallyCompactSpace X E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : CompleteSpace E ι : Type u_3 F : ι → C(X, E) hF : ∀ (K : Compacts X), Summable fun i => ‖restrict (↑K) (F i)‖ K : Compacts X s : Finset ι x : ↑↑K ⊢ (restrict (↑K) (∑ i in s, F i)) x = (∑ i in s, restrict (↑K) (F i)) x
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢ exact fun x => h (f x) #align continuous_map.comp_right_continuous_map ContinuousMap.compRightContinuousMap @[simp] theorem compRightContinuousMap_apply {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) (g : C(Y, T)) : (compRightContinuousMap T f) g = g.comp f := rfl #align continuous_map.comp_right_continuous_map_apply ContinuousMap.compRightContinuousMap_apply /-- Precomposition by a homeomorphism is itself a homeomorphism between spaces of continuous maps. -/ def compRightHomeomorph {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : X ≃ₜ Y) : C(Y, T) ≃ₜ C(X, T) where toFun := compRightContinuousMap T f.toContinuousMap invFun := compRightContinuousMap T f.symm.toContinuousMap left_inv g := ext fun _ => congr_arg g (f.apply_symm_apply _) right_inv g := ext fun _ => congr_arg g (f.symm_apply_apply _) #align continuous_map.comp_right_homeomorph ContinuousMap.compRightHomeomorph theorem compRightAlgHom_continuous {X Y : Type*} (R A : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [CommSemiring R] [Semiring A] [MetricSpace A] [TopologicalSemiring A] [Algebra R A] (f : C(X, Y)) : Continuous (compRightAlgHom R A f) := map_continuous (compRightContinuousMap A f) #align continuous_map.comp_right_alg_hom_continuous ContinuousMap.compRightAlgHom_continuous end CompRight section LocalNormalConvergence /-! ### Local normal convergence A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of `C(X, E)` (i.e. locally uniform convergence). -/ open TopologicalSpace variable {X : Type*} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] variable {E : Type*} [NormedAddCommGroup E] [CompleteSpace E] theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x
simp
theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x
Mathlib.Topology.ContinuousFunction.Compact.491_0.Mig2jTVnn2FLKEB
theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F
Mathlib_Topology_ContinuousFunction_Compact
case h X : Type u_1 inst✝⁴ : TopologicalSpace X inst✝³ : T2Space X inst✝² : LocallyCompactSpace X E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : CompleteSpace E ι : Type u_3 F : ι → C(X, E) hF : ∀ (K : Compacts X), Summable fun i => ‖restrict (↑K) (F i)‖ K : Compacts X s : Finset ι x : ↑↑K ⊢ (restrict (↑K) (∑ i in s, F i)) x = ∑ c in s, (restrict (↑K) (F c)) x
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢ exact fun x => h (f x) #align continuous_map.comp_right_continuous_map ContinuousMap.compRightContinuousMap @[simp] theorem compRightContinuousMap_apply {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) (g : C(Y, T)) : (compRightContinuousMap T f) g = g.comp f := rfl #align continuous_map.comp_right_continuous_map_apply ContinuousMap.compRightContinuousMap_apply /-- Precomposition by a homeomorphism is itself a homeomorphism between spaces of continuous maps. -/ def compRightHomeomorph {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : X ≃ₜ Y) : C(Y, T) ≃ₜ C(X, T) where toFun := compRightContinuousMap T f.toContinuousMap invFun := compRightContinuousMap T f.symm.toContinuousMap left_inv g := ext fun _ => congr_arg g (f.apply_symm_apply _) right_inv g := ext fun _ => congr_arg g (f.symm_apply_apply _) #align continuous_map.comp_right_homeomorph ContinuousMap.compRightHomeomorph theorem compRightAlgHom_continuous {X Y : Type*} (R A : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [CommSemiring R] [Semiring A] [MetricSpace A] [TopologicalSemiring A] [Algebra R A] (f : C(X, Y)) : Continuous (compRightAlgHom R A f) := map_continuous (compRightContinuousMap A f) #align continuous_map.comp_right_alg_hom_continuous ContinuousMap.compRightAlgHom_continuous end CompRight section LocalNormalConvergence /-! ### Local normal convergence A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of `C(X, E)` (i.e. locally uniform convergence). -/ open TopologicalSpace variable {X : Type*} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] variable {E : Type*} [NormedAddCommGroup E] [CompleteSpace E] theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x simp -- This used to be the end of the proof before leanprover/lean4#2644
erw [restrict_apply, restrict_apply, restrict_apply, restrict_apply]
theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x simp -- This used to be the end of the proof before leanprover/lean4#2644
Mathlib.Topology.ContinuousFunction.Compact.491_0.Mig2jTVnn2FLKEB
theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F
Mathlib_Topology_ContinuousFunction_Compact
case h X : Type u_1 inst✝⁴ : TopologicalSpace X inst✝³ : T2Space X inst✝² : LocallyCompactSpace X E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : CompleteSpace E ι : Type u_3 F : ι → C(X, E) hF : ∀ (K : Compacts X), Summable fun i => ‖restrict (↑K) (F i)‖ K : Compacts X s : Finset ι x : ↑↑K ⊢ (∑ i in s, F i) ↑x = ∑ c in s, (restrict (↑K) (F c)) x
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢ exact fun x => h (f x) #align continuous_map.comp_right_continuous_map ContinuousMap.compRightContinuousMap @[simp] theorem compRightContinuousMap_apply {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) (g : C(Y, T)) : (compRightContinuousMap T f) g = g.comp f := rfl #align continuous_map.comp_right_continuous_map_apply ContinuousMap.compRightContinuousMap_apply /-- Precomposition by a homeomorphism is itself a homeomorphism between spaces of continuous maps. -/ def compRightHomeomorph {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : X ≃ₜ Y) : C(Y, T) ≃ₜ C(X, T) where toFun := compRightContinuousMap T f.toContinuousMap invFun := compRightContinuousMap T f.symm.toContinuousMap left_inv g := ext fun _ => congr_arg g (f.apply_symm_apply _) right_inv g := ext fun _ => congr_arg g (f.symm_apply_apply _) #align continuous_map.comp_right_homeomorph ContinuousMap.compRightHomeomorph theorem compRightAlgHom_continuous {X Y : Type*} (R A : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [CommSemiring R] [Semiring A] [MetricSpace A] [TopologicalSemiring A] [Algebra R A] (f : C(X, Y)) : Continuous (compRightAlgHom R A f) := map_continuous (compRightContinuousMap A f) #align continuous_map.comp_right_alg_hom_continuous ContinuousMap.compRightAlgHom_continuous end CompRight section LocalNormalConvergence /-! ### Local normal convergence A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of `C(X, E)` (i.e. locally uniform convergence). -/ open TopologicalSpace variable {X : Type*} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] variable {E : Type*} [NormedAddCommGroup E] [CompleteSpace E] theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x simp -- This used to be the end of the proof before leanprover/lean4#2644 erw [restrict_apply, restrict_apply, restrict_apply, restrict_apply]
simp? says simp only [coe_sum, Finset.sum_apply]
theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x simp -- This used to be the end of the proof before leanprover/lean4#2644 erw [restrict_apply, restrict_apply, restrict_apply, restrict_apply]
Mathlib.Topology.ContinuousFunction.Compact.491_0.Mig2jTVnn2FLKEB
theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F
Mathlib_Topology_ContinuousFunction_Compact
case h X : Type u_1 inst✝⁴ : TopologicalSpace X inst✝³ : T2Space X inst✝² : LocallyCompactSpace X E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : CompleteSpace E ι : Type u_3 F : ι → C(X, E) hF : ∀ (K : Compacts X), Summable fun i => ‖restrict (↑K) (F i)‖ K : Compacts X s : Finset ι x : ↑↑K ⊢ (∑ i in s, F i) ↑x = ∑ c in s, (restrict (↑K) (F c)) x
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢ exact fun x => h (f x) #align continuous_map.comp_right_continuous_map ContinuousMap.compRightContinuousMap @[simp] theorem compRightContinuousMap_apply {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) (g : C(Y, T)) : (compRightContinuousMap T f) g = g.comp f := rfl #align continuous_map.comp_right_continuous_map_apply ContinuousMap.compRightContinuousMap_apply /-- Precomposition by a homeomorphism is itself a homeomorphism between spaces of continuous maps. -/ def compRightHomeomorph {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : X ≃ₜ Y) : C(Y, T) ≃ₜ C(X, T) where toFun := compRightContinuousMap T f.toContinuousMap invFun := compRightContinuousMap T f.symm.toContinuousMap left_inv g := ext fun _ => congr_arg g (f.apply_symm_apply _) right_inv g := ext fun _ => congr_arg g (f.symm_apply_apply _) #align continuous_map.comp_right_homeomorph ContinuousMap.compRightHomeomorph theorem compRightAlgHom_continuous {X Y : Type*} (R A : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [CommSemiring R] [Semiring A] [MetricSpace A] [TopologicalSemiring A] [Algebra R A] (f : C(X, Y)) : Continuous (compRightAlgHom R A f) := map_continuous (compRightContinuousMap A f) #align continuous_map.comp_right_alg_hom_continuous ContinuousMap.compRightAlgHom_continuous end CompRight section LocalNormalConvergence /-! ### Local normal convergence A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of `C(X, E)` (i.e. locally uniform convergence). -/ open TopologicalSpace variable {X : Type*} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] variable {E : Type*} [NormedAddCommGroup E] [CompleteSpace E] theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x simp -- This used to be the end of the proof before leanprover/lean4#2644 erw [restrict_apply, restrict_apply, restrict_apply, restrict_apply] simp? says
simp only [coe_sum, Finset.sum_apply]
theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x simp -- This used to be the end of the proof before leanprover/lean4#2644 erw [restrict_apply, restrict_apply, restrict_apply, restrict_apply] simp? says
Mathlib.Topology.ContinuousFunction.Compact.491_0.Mig2jTVnn2FLKEB
theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F
Mathlib_Topology_ContinuousFunction_Compact
case h X : Type u_1 inst✝⁴ : TopologicalSpace X inst✝³ : T2Space X inst✝² : LocallyCompactSpace X E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : CompleteSpace E ι : Type u_3 F : ι → C(X, E) hF : ∀ (K : Compacts X), Summable fun i => ‖restrict (↑K) (F i)‖ K : Compacts X s : Finset ι x : ↑↑K ⊢ ∑ c in s, (F c) ↑x = ∑ c in s, (restrict (↑K) (F c)) x
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢ exact fun x => h (f x) #align continuous_map.comp_right_continuous_map ContinuousMap.compRightContinuousMap @[simp] theorem compRightContinuousMap_apply {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) (g : C(Y, T)) : (compRightContinuousMap T f) g = g.comp f := rfl #align continuous_map.comp_right_continuous_map_apply ContinuousMap.compRightContinuousMap_apply /-- Precomposition by a homeomorphism is itself a homeomorphism between spaces of continuous maps. -/ def compRightHomeomorph {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : X ≃ₜ Y) : C(Y, T) ≃ₜ C(X, T) where toFun := compRightContinuousMap T f.toContinuousMap invFun := compRightContinuousMap T f.symm.toContinuousMap left_inv g := ext fun _ => congr_arg g (f.apply_symm_apply _) right_inv g := ext fun _ => congr_arg g (f.symm_apply_apply _) #align continuous_map.comp_right_homeomorph ContinuousMap.compRightHomeomorph theorem compRightAlgHom_continuous {X Y : Type*} (R A : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [CommSemiring R] [Semiring A] [MetricSpace A] [TopologicalSemiring A] [Algebra R A] (f : C(X, Y)) : Continuous (compRightAlgHom R A f) := map_continuous (compRightContinuousMap A f) #align continuous_map.comp_right_alg_hom_continuous ContinuousMap.compRightAlgHom_continuous end CompRight section LocalNormalConvergence /-! ### Local normal convergence A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of `C(X, E)` (i.e. locally uniform convergence). -/ open TopologicalSpace variable {X : Type*} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] variable {E : Type*} [NormedAddCommGroup E] [CompleteSpace E] theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x simp -- This used to be the end of the proof before leanprover/lean4#2644 erw [restrict_apply, restrict_apply, restrict_apply, restrict_apply] simp? says simp only [coe_sum, Finset.sum_apply]
congr!
theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x simp -- This used to be the end of the proof before leanprover/lean4#2644 erw [restrict_apply, restrict_apply, restrict_apply, restrict_apply] simp? says simp only [coe_sum, Finset.sum_apply]
Mathlib.Topology.ContinuousFunction.Compact.491_0.Mig2jTVnn2FLKEB
theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F
Mathlib_Topology_ContinuousFunction_Compact
case intro X : Type u_1 inst✝⁴ : TopologicalSpace X inst✝³ : T2Space X inst✝² : LocallyCompactSpace X E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : CompleteSpace E ι : Type u_3 F : ι → C(X, E) hF : ∀ (K : Compacts X), Summable fun i => ‖restrict (↑K) (F i)‖ K : Compacts X A : ∀ (s : Finset ι), restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict (↑K) (F i) ⊢ ∃ f, Tendsto (fun i => restrict (↑K) (∑ b in i, F b)) atTop (𝓝 f)
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢ exact fun x => h (f x) #align continuous_map.comp_right_continuous_map ContinuousMap.compRightContinuousMap @[simp] theorem compRightContinuousMap_apply {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) (g : C(Y, T)) : (compRightContinuousMap T f) g = g.comp f := rfl #align continuous_map.comp_right_continuous_map_apply ContinuousMap.compRightContinuousMap_apply /-- Precomposition by a homeomorphism is itself a homeomorphism between spaces of continuous maps. -/ def compRightHomeomorph {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : X ≃ₜ Y) : C(Y, T) ≃ₜ C(X, T) where toFun := compRightContinuousMap T f.toContinuousMap invFun := compRightContinuousMap T f.symm.toContinuousMap left_inv g := ext fun _ => congr_arg g (f.apply_symm_apply _) right_inv g := ext fun _ => congr_arg g (f.symm_apply_apply _) #align continuous_map.comp_right_homeomorph ContinuousMap.compRightHomeomorph theorem compRightAlgHom_continuous {X Y : Type*} (R A : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [CommSemiring R] [Semiring A] [MetricSpace A] [TopologicalSemiring A] [Algebra R A] (f : C(X, Y)) : Continuous (compRightAlgHom R A f) := map_continuous (compRightContinuousMap A f) #align continuous_map.comp_right_alg_hom_continuous ContinuousMap.compRightAlgHom_continuous end CompRight section LocalNormalConvergence /-! ### Local normal convergence A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of `C(X, E)` (i.e. locally uniform convergence). -/ open TopologicalSpace variable {X : Type*} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] variable {E : Type*} [NormedAddCommGroup E] [CompleteSpace E] theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x simp -- This used to be the end of the proof before leanprover/lean4#2644 erw [restrict_apply, restrict_apply, restrict_apply, restrict_apply] simp? says simp only [coe_sum, Finset.sum_apply] congr!
simpa only [HasSum, A] using (hF K).of_norm
theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x simp -- This used to be the end of the proof before leanprover/lean4#2644 erw [restrict_apply, restrict_apply, restrict_apply, restrict_apply] simp? says simp only [coe_sum, Finset.sum_apply] congr!
Mathlib.Topology.ContinuousFunction.Compact.491_0.Mig2jTVnn2FLKEB
theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F
Mathlib_Topology_ContinuousFunction_Compact
α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : NormedAddCommGroup β inst✝² : StarAddMonoid β inst✝¹ : NormedStarGroup β inst✝ : CompactSpace α f : C(α, β) ⊢ ‖star f‖ = ‖f‖
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢ exact fun x => h (f x) #align continuous_map.comp_right_continuous_map ContinuousMap.compRightContinuousMap @[simp] theorem compRightContinuousMap_apply {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) (g : C(Y, T)) : (compRightContinuousMap T f) g = g.comp f := rfl #align continuous_map.comp_right_continuous_map_apply ContinuousMap.compRightContinuousMap_apply /-- Precomposition by a homeomorphism is itself a homeomorphism between spaces of continuous maps. -/ def compRightHomeomorph {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : X ≃ₜ Y) : C(Y, T) ≃ₜ C(X, T) where toFun := compRightContinuousMap T f.toContinuousMap invFun := compRightContinuousMap T f.symm.toContinuousMap left_inv g := ext fun _ => congr_arg g (f.apply_symm_apply _) right_inv g := ext fun _ => congr_arg g (f.symm_apply_apply _) #align continuous_map.comp_right_homeomorph ContinuousMap.compRightHomeomorph theorem compRightAlgHom_continuous {X Y : Type*} (R A : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [CommSemiring R] [Semiring A] [MetricSpace A] [TopologicalSemiring A] [Algebra R A] (f : C(X, Y)) : Continuous (compRightAlgHom R A f) := map_continuous (compRightContinuousMap A f) #align continuous_map.comp_right_alg_hom_continuous ContinuousMap.compRightAlgHom_continuous end CompRight section LocalNormalConvergence /-! ### Local normal convergence A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of `C(X, E)` (i.e. locally uniform convergence). -/ open TopologicalSpace variable {X : Type*} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] variable {E : Type*} [NormedAddCommGroup E] [CompleteSpace E] theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x simp -- This used to be the end of the proof before leanprover/lean4#2644 erw [restrict_apply, restrict_apply, restrict_apply, restrict_apply] simp? says simp only [coe_sum, Finset.sum_apply] congr! simpa only [HasSum, A] using (hF K).of_norm #align continuous_map.summable_of_locally_summable_norm ContinuousMap.summable_of_locally_summable_norm end LocalNormalConvergence /-! ### Star structures In this section, if `β` is a normed ⋆-group, then so is the space of continuous functions from `α` to `β`, by using the star operation pointwise. Furthermore, if `α` is compact and `β` is a C⋆-ring, then `C(α, β)` is a C⋆-ring. -/ section NormedSpace variable {α : Type*} {β : Type*} variable [TopologicalSpace α] [NormedAddCommGroup β] [StarAddMonoid β] [NormedStarGroup β] theorem _root_.BoundedContinuousFunction.mkOfCompact_star [CompactSpace α] (f : C(α, β)) : mkOfCompact (star f) = star (mkOfCompact f) := rfl #align bounded_continuous_function.mk_of_compact_star BoundedContinuousFunction.mkOfCompact_star instance [CompactSpace α] : NormedStarGroup C(α, β) where norm_star f := by
rw [← BoundedContinuousFunction.norm_mkOfCompact, BoundedContinuousFunction.mkOfCompact_star, norm_star, BoundedContinuousFunction.norm_mkOfCompact]
instance [CompactSpace α] : NormedStarGroup C(α, β) where norm_star f := by
Mathlib.Topology.ContinuousFunction.Compact.528_0.Mig2jTVnn2FLKEB
instance [CompactSpace α] : NormedStarGroup C(α, β) where norm_star f
Mathlib_Topology_ContinuousFunction_Compact
α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : NormedRing β inst✝² : StarRing β inst✝¹ : CompactSpace α inst✝ : CstarRing β f : C(α, β) ⊢ ‖star f * f‖ = ‖f‖ * ‖f‖
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢ exact fun x => h (f x) #align continuous_map.comp_right_continuous_map ContinuousMap.compRightContinuousMap @[simp] theorem compRightContinuousMap_apply {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) (g : C(Y, T)) : (compRightContinuousMap T f) g = g.comp f := rfl #align continuous_map.comp_right_continuous_map_apply ContinuousMap.compRightContinuousMap_apply /-- Precomposition by a homeomorphism is itself a homeomorphism between spaces of continuous maps. -/ def compRightHomeomorph {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : X ≃ₜ Y) : C(Y, T) ≃ₜ C(X, T) where toFun := compRightContinuousMap T f.toContinuousMap invFun := compRightContinuousMap T f.symm.toContinuousMap left_inv g := ext fun _ => congr_arg g (f.apply_symm_apply _) right_inv g := ext fun _ => congr_arg g (f.symm_apply_apply _) #align continuous_map.comp_right_homeomorph ContinuousMap.compRightHomeomorph theorem compRightAlgHom_continuous {X Y : Type*} (R A : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [CommSemiring R] [Semiring A] [MetricSpace A] [TopologicalSemiring A] [Algebra R A] (f : C(X, Y)) : Continuous (compRightAlgHom R A f) := map_continuous (compRightContinuousMap A f) #align continuous_map.comp_right_alg_hom_continuous ContinuousMap.compRightAlgHom_continuous end CompRight section LocalNormalConvergence /-! ### Local normal convergence A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of `C(X, E)` (i.e. locally uniform convergence). -/ open TopologicalSpace variable {X : Type*} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] variable {E : Type*} [NormedAddCommGroup E] [CompleteSpace E] theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x simp -- This used to be the end of the proof before leanprover/lean4#2644 erw [restrict_apply, restrict_apply, restrict_apply, restrict_apply] simp? says simp only [coe_sum, Finset.sum_apply] congr! simpa only [HasSum, A] using (hF K).of_norm #align continuous_map.summable_of_locally_summable_norm ContinuousMap.summable_of_locally_summable_norm end LocalNormalConvergence /-! ### Star structures In this section, if `β` is a normed ⋆-group, then so is the space of continuous functions from `α` to `β`, by using the star operation pointwise. Furthermore, if `α` is compact and `β` is a C⋆-ring, then `C(α, β)` is a C⋆-ring. -/ section NormedSpace variable {α : Type*} {β : Type*} variable [TopologicalSpace α] [NormedAddCommGroup β] [StarAddMonoid β] [NormedStarGroup β] theorem _root_.BoundedContinuousFunction.mkOfCompact_star [CompactSpace α] (f : C(α, β)) : mkOfCompact (star f) = star (mkOfCompact f) := rfl #align bounded_continuous_function.mk_of_compact_star BoundedContinuousFunction.mkOfCompact_star instance [CompactSpace α] : NormedStarGroup C(α, β) where norm_star f := by rw [← BoundedContinuousFunction.norm_mkOfCompact, BoundedContinuousFunction.mkOfCompact_star, norm_star, BoundedContinuousFunction.norm_mkOfCompact] end NormedSpace section CstarRing variable {α : Type*} {β : Type*} variable [TopologicalSpace α] [NormedRing β] [StarRing β] instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f} := by
refine' le_antisymm _ _
instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f} := by
Mathlib.Topology.ContinuousFunction.Compact.541_0.Mig2jTVnn2FLKEB
instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f}
Mathlib_Topology_ContinuousFunction_Compact
case refine'_1 α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : NormedRing β inst✝² : StarRing β inst✝¹ : CompactSpace α inst✝ : CstarRing β f : C(α, β) ⊢ ‖star f * f‖ ≤ ‖f‖ * ‖f‖
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢ exact fun x => h (f x) #align continuous_map.comp_right_continuous_map ContinuousMap.compRightContinuousMap @[simp] theorem compRightContinuousMap_apply {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) (g : C(Y, T)) : (compRightContinuousMap T f) g = g.comp f := rfl #align continuous_map.comp_right_continuous_map_apply ContinuousMap.compRightContinuousMap_apply /-- Precomposition by a homeomorphism is itself a homeomorphism between spaces of continuous maps. -/ def compRightHomeomorph {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : X ≃ₜ Y) : C(Y, T) ≃ₜ C(X, T) where toFun := compRightContinuousMap T f.toContinuousMap invFun := compRightContinuousMap T f.symm.toContinuousMap left_inv g := ext fun _ => congr_arg g (f.apply_symm_apply _) right_inv g := ext fun _ => congr_arg g (f.symm_apply_apply _) #align continuous_map.comp_right_homeomorph ContinuousMap.compRightHomeomorph theorem compRightAlgHom_continuous {X Y : Type*} (R A : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [CommSemiring R] [Semiring A] [MetricSpace A] [TopologicalSemiring A] [Algebra R A] (f : C(X, Y)) : Continuous (compRightAlgHom R A f) := map_continuous (compRightContinuousMap A f) #align continuous_map.comp_right_alg_hom_continuous ContinuousMap.compRightAlgHom_continuous end CompRight section LocalNormalConvergence /-! ### Local normal convergence A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of `C(X, E)` (i.e. locally uniform convergence). -/ open TopologicalSpace variable {X : Type*} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] variable {E : Type*} [NormedAddCommGroup E] [CompleteSpace E] theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x simp -- This used to be the end of the proof before leanprover/lean4#2644 erw [restrict_apply, restrict_apply, restrict_apply, restrict_apply] simp? says simp only [coe_sum, Finset.sum_apply] congr! simpa only [HasSum, A] using (hF K).of_norm #align continuous_map.summable_of_locally_summable_norm ContinuousMap.summable_of_locally_summable_norm end LocalNormalConvergence /-! ### Star structures In this section, if `β` is a normed ⋆-group, then so is the space of continuous functions from `α` to `β`, by using the star operation pointwise. Furthermore, if `α` is compact and `β` is a C⋆-ring, then `C(α, β)` is a C⋆-ring. -/ section NormedSpace variable {α : Type*} {β : Type*} variable [TopologicalSpace α] [NormedAddCommGroup β] [StarAddMonoid β] [NormedStarGroup β] theorem _root_.BoundedContinuousFunction.mkOfCompact_star [CompactSpace α] (f : C(α, β)) : mkOfCompact (star f) = star (mkOfCompact f) := rfl #align bounded_continuous_function.mk_of_compact_star BoundedContinuousFunction.mkOfCompact_star instance [CompactSpace α] : NormedStarGroup C(α, β) where norm_star f := by rw [← BoundedContinuousFunction.norm_mkOfCompact, BoundedContinuousFunction.mkOfCompact_star, norm_star, BoundedContinuousFunction.norm_mkOfCompact] end NormedSpace section CstarRing variable {α : Type*} {β : Type*} variable [TopologicalSpace α] [NormedRing β] [StarRing β] instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f} := by refine' le_antisymm _ _ ·
rw [← sq, ContinuousMap.norm_le _ (sq_nonneg _)]
instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f} := by refine' le_antisymm _ _ ·
Mathlib.Topology.ContinuousFunction.Compact.541_0.Mig2jTVnn2FLKEB
instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f}
Mathlib_Topology_ContinuousFunction_Compact
case refine'_1 α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : NormedRing β inst✝² : StarRing β inst✝¹ : CompactSpace α inst✝ : CstarRing β f : C(α, β) ⊢ ∀ (x : α), ‖(star f * f) x‖ ≤ ‖f‖ ^ 2
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢ exact fun x => h (f x) #align continuous_map.comp_right_continuous_map ContinuousMap.compRightContinuousMap @[simp] theorem compRightContinuousMap_apply {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) (g : C(Y, T)) : (compRightContinuousMap T f) g = g.comp f := rfl #align continuous_map.comp_right_continuous_map_apply ContinuousMap.compRightContinuousMap_apply /-- Precomposition by a homeomorphism is itself a homeomorphism between spaces of continuous maps. -/ def compRightHomeomorph {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : X ≃ₜ Y) : C(Y, T) ≃ₜ C(X, T) where toFun := compRightContinuousMap T f.toContinuousMap invFun := compRightContinuousMap T f.symm.toContinuousMap left_inv g := ext fun _ => congr_arg g (f.apply_symm_apply _) right_inv g := ext fun _ => congr_arg g (f.symm_apply_apply _) #align continuous_map.comp_right_homeomorph ContinuousMap.compRightHomeomorph theorem compRightAlgHom_continuous {X Y : Type*} (R A : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [CommSemiring R] [Semiring A] [MetricSpace A] [TopologicalSemiring A] [Algebra R A] (f : C(X, Y)) : Continuous (compRightAlgHom R A f) := map_continuous (compRightContinuousMap A f) #align continuous_map.comp_right_alg_hom_continuous ContinuousMap.compRightAlgHom_continuous end CompRight section LocalNormalConvergence /-! ### Local normal convergence A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of `C(X, E)` (i.e. locally uniform convergence). -/ open TopologicalSpace variable {X : Type*} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] variable {E : Type*} [NormedAddCommGroup E] [CompleteSpace E] theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x simp -- This used to be the end of the proof before leanprover/lean4#2644 erw [restrict_apply, restrict_apply, restrict_apply, restrict_apply] simp? says simp only [coe_sum, Finset.sum_apply] congr! simpa only [HasSum, A] using (hF K).of_norm #align continuous_map.summable_of_locally_summable_norm ContinuousMap.summable_of_locally_summable_norm end LocalNormalConvergence /-! ### Star structures In this section, if `β` is a normed ⋆-group, then so is the space of continuous functions from `α` to `β`, by using the star operation pointwise. Furthermore, if `α` is compact and `β` is a C⋆-ring, then `C(α, β)` is a C⋆-ring. -/ section NormedSpace variable {α : Type*} {β : Type*} variable [TopologicalSpace α] [NormedAddCommGroup β] [StarAddMonoid β] [NormedStarGroup β] theorem _root_.BoundedContinuousFunction.mkOfCompact_star [CompactSpace α] (f : C(α, β)) : mkOfCompact (star f) = star (mkOfCompact f) := rfl #align bounded_continuous_function.mk_of_compact_star BoundedContinuousFunction.mkOfCompact_star instance [CompactSpace α] : NormedStarGroup C(α, β) where norm_star f := by rw [← BoundedContinuousFunction.norm_mkOfCompact, BoundedContinuousFunction.mkOfCompact_star, norm_star, BoundedContinuousFunction.norm_mkOfCompact] end NormedSpace section CstarRing variable {α : Type*} {β : Type*} variable [TopologicalSpace α] [NormedRing β] [StarRing β] instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f} := by refine' le_antisymm _ _ · rw [← sq, ContinuousMap.norm_le _ (sq_nonneg _)]
intro x
instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f} := by refine' le_antisymm _ _ · rw [← sq, ContinuousMap.norm_le _ (sq_nonneg _)]
Mathlib.Topology.ContinuousFunction.Compact.541_0.Mig2jTVnn2FLKEB
instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f}
Mathlib_Topology_ContinuousFunction_Compact
case refine'_1 α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : NormedRing β inst✝² : StarRing β inst✝¹ : CompactSpace α inst✝ : CstarRing β f : C(α, β) x : α ⊢ ‖(star f * f) x‖ ≤ ‖f‖ ^ 2
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢ exact fun x => h (f x) #align continuous_map.comp_right_continuous_map ContinuousMap.compRightContinuousMap @[simp] theorem compRightContinuousMap_apply {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) (g : C(Y, T)) : (compRightContinuousMap T f) g = g.comp f := rfl #align continuous_map.comp_right_continuous_map_apply ContinuousMap.compRightContinuousMap_apply /-- Precomposition by a homeomorphism is itself a homeomorphism between spaces of continuous maps. -/ def compRightHomeomorph {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : X ≃ₜ Y) : C(Y, T) ≃ₜ C(X, T) where toFun := compRightContinuousMap T f.toContinuousMap invFun := compRightContinuousMap T f.symm.toContinuousMap left_inv g := ext fun _ => congr_arg g (f.apply_symm_apply _) right_inv g := ext fun _ => congr_arg g (f.symm_apply_apply _) #align continuous_map.comp_right_homeomorph ContinuousMap.compRightHomeomorph theorem compRightAlgHom_continuous {X Y : Type*} (R A : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [CommSemiring R] [Semiring A] [MetricSpace A] [TopologicalSemiring A] [Algebra R A] (f : C(X, Y)) : Continuous (compRightAlgHom R A f) := map_continuous (compRightContinuousMap A f) #align continuous_map.comp_right_alg_hom_continuous ContinuousMap.compRightAlgHom_continuous end CompRight section LocalNormalConvergence /-! ### Local normal convergence A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of `C(X, E)` (i.e. locally uniform convergence). -/ open TopologicalSpace variable {X : Type*} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] variable {E : Type*} [NormedAddCommGroup E] [CompleteSpace E] theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x simp -- This used to be the end of the proof before leanprover/lean4#2644 erw [restrict_apply, restrict_apply, restrict_apply, restrict_apply] simp? says simp only [coe_sum, Finset.sum_apply] congr! simpa only [HasSum, A] using (hF K).of_norm #align continuous_map.summable_of_locally_summable_norm ContinuousMap.summable_of_locally_summable_norm end LocalNormalConvergence /-! ### Star structures In this section, if `β` is a normed ⋆-group, then so is the space of continuous functions from `α` to `β`, by using the star operation pointwise. Furthermore, if `α` is compact and `β` is a C⋆-ring, then `C(α, β)` is a C⋆-ring. -/ section NormedSpace variable {α : Type*} {β : Type*} variable [TopologicalSpace α] [NormedAddCommGroup β] [StarAddMonoid β] [NormedStarGroup β] theorem _root_.BoundedContinuousFunction.mkOfCompact_star [CompactSpace α] (f : C(α, β)) : mkOfCompact (star f) = star (mkOfCompact f) := rfl #align bounded_continuous_function.mk_of_compact_star BoundedContinuousFunction.mkOfCompact_star instance [CompactSpace α] : NormedStarGroup C(α, β) where norm_star f := by rw [← BoundedContinuousFunction.norm_mkOfCompact, BoundedContinuousFunction.mkOfCompact_star, norm_star, BoundedContinuousFunction.norm_mkOfCompact] end NormedSpace section CstarRing variable {α : Type*} {β : Type*} variable [TopologicalSpace α] [NormedRing β] [StarRing β] instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f} := by refine' le_antisymm _ _ · rw [← sq, ContinuousMap.norm_le _ (sq_nonneg _)] intro x
simp only [ContinuousMap.coe_mul, coe_star, Pi.mul_apply, Pi.star_apply, CstarRing.norm_star_mul_self, ← sq]
instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f} := by refine' le_antisymm _ _ · rw [← sq, ContinuousMap.norm_le _ (sq_nonneg _)] intro x
Mathlib.Topology.ContinuousFunction.Compact.541_0.Mig2jTVnn2FLKEB
instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f}
Mathlib_Topology_ContinuousFunction_Compact
case refine'_1 α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : NormedRing β inst✝² : StarRing β inst✝¹ : CompactSpace α inst✝ : CstarRing β f : C(α, β) x : α ⊢ ‖f x‖ ^ 2 ≤ ‖f‖ ^ 2
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢ exact fun x => h (f x) #align continuous_map.comp_right_continuous_map ContinuousMap.compRightContinuousMap @[simp] theorem compRightContinuousMap_apply {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) (g : C(Y, T)) : (compRightContinuousMap T f) g = g.comp f := rfl #align continuous_map.comp_right_continuous_map_apply ContinuousMap.compRightContinuousMap_apply /-- Precomposition by a homeomorphism is itself a homeomorphism between spaces of continuous maps. -/ def compRightHomeomorph {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : X ≃ₜ Y) : C(Y, T) ≃ₜ C(X, T) where toFun := compRightContinuousMap T f.toContinuousMap invFun := compRightContinuousMap T f.symm.toContinuousMap left_inv g := ext fun _ => congr_arg g (f.apply_symm_apply _) right_inv g := ext fun _ => congr_arg g (f.symm_apply_apply _) #align continuous_map.comp_right_homeomorph ContinuousMap.compRightHomeomorph theorem compRightAlgHom_continuous {X Y : Type*} (R A : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [CommSemiring R] [Semiring A] [MetricSpace A] [TopologicalSemiring A] [Algebra R A] (f : C(X, Y)) : Continuous (compRightAlgHom R A f) := map_continuous (compRightContinuousMap A f) #align continuous_map.comp_right_alg_hom_continuous ContinuousMap.compRightAlgHom_continuous end CompRight section LocalNormalConvergence /-! ### Local normal convergence A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of `C(X, E)` (i.e. locally uniform convergence). -/ open TopologicalSpace variable {X : Type*} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] variable {E : Type*} [NormedAddCommGroup E] [CompleteSpace E] theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x simp -- This used to be the end of the proof before leanprover/lean4#2644 erw [restrict_apply, restrict_apply, restrict_apply, restrict_apply] simp? says simp only [coe_sum, Finset.sum_apply] congr! simpa only [HasSum, A] using (hF K).of_norm #align continuous_map.summable_of_locally_summable_norm ContinuousMap.summable_of_locally_summable_norm end LocalNormalConvergence /-! ### Star structures In this section, if `β` is a normed ⋆-group, then so is the space of continuous functions from `α` to `β`, by using the star operation pointwise. Furthermore, if `α` is compact and `β` is a C⋆-ring, then `C(α, β)` is a C⋆-ring. -/ section NormedSpace variable {α : Type*} {β : Type*} variable [TopologicalSpace α] [NormedAddCommGroup β] [StarAddMonoid β] [NormedStarGroup β] theorem _root_.BoundedContinuousFunction.mkOfCompact_star [CompactSpace α] (f : C(α, β)) : mkOfCompact (star f) = star (mkOfCompact f) := rfl #align bounded_continuous_function.mk_of_compact_star BoundedContinuousFunction.mkOfCompact_star instance [CompactSpace α] : NormedStarGroup C(α, β) where norm_star f := by rw [← BoundedContinuousFunction.norm_mkOfCompact, BoundedContinuousFunction.mkOfCompact_star, norm_star, BoundedContinuousFunction.norm_mkOfCompact] end NormedSpace section CstarRing variable {α : Type*} {β : Type*} variable [TopologicalSpace α] [NormedRing β] [StarRing β] instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f} := by refine' le_antisymm _ _ · rw [← sq, ContinuousMap.norm_le _ (sq_nonneg _)] intro x simp only [ContinuousMap.coe_mul, coe_star, Pi.mul_apply, Pi.star_apply, CstarRing.norm_star_mul_self, ← sq]
refine' sq_le_sq' _ _
instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f} := by refine' le_antisymm _ _ · rw [← sq, ContinuousMap.norm_le _ (sq_nonneg _)] intro x simp only [ContinuousMap.coe_mul, coe_star, Pi.mul_apply, Pi.star_apply, CstarRing.norm_star_mul_self, ← sq]
Mathlib.Topology.ContinuousFunction.Compact.541_0.Mig2jTVnn2FLKEB
instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f}
Mathlib_Topology_ContinuousFunction_Compact
case refine'_1.refine'_1 α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : NormedRing β inst✝² : StarRing β inst✝¹ : CompactSpace α inst✝ : CstarRing β f : C(α, β) x : α ⊢ -‖f‖ ≤ ‖f x‖
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢ exact fun x => h (f x) #align continuous_map.comp_right_continuous_map ContinuousMap.compRightContinuousMap @[simp] theorem compRightContinuousMap_apply {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) (g : C(Y, T)) : (compRightContinuousMap T f) g = g.comp f := rfl #align continuous_map.comp_right_continuous_map_apply ContinuousMap.compRightContinuousMap_apply /-- Precomposition by a homeomorphism is itself a homeomorphism between spaces of continuous maps. -/ def compRightHomeomorph {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : X ≃ₜ Y) : C(Y, T) ≃ₜ C(X, T) where toFun := compRightContinuousMap T f.toContinuousMap invFun := compRightContinuousMap T f.symm.toContinuousMap left_inv g := ext fun _ => congr_arg g (f.apply_symm_apply _) right_inv g := ext fun _ => congr_arg g (f.symm_apply_apply _) #align continuous_map.comp_right_homeomorph ContinuousMap.compRightHomeomorph theorem compRightAlgHom_continuous {X Y : Type*} (R A : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [CommSemiring R] [Semiring A] [MetricSpace A] [TopologicalSemiring A] [Algebra R A] (f : C(X, Y)) : Continuous (compRightAlgHom R A f) := map_continuous (compRightContinuousMap A f) #align continuous_map.comp_right_alg_hom_continuous ContinuousMap.compRightAlgHom_continuous end CompRight section LocalNormalConvergence /-! ### Local normal convergence A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of `C(X, E)` (i.e. locally uniform convergence). -/ open TopologicalSpace variable {X : Type*} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] variable {E : Type*} [NormedAddCommGroup E] [CompleteSpace E] theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x simp -- This used to be the end of the proof before leanprover/lean4#2644 erw [restrict_apply, restrict_apply, restrict_apply, restrict_apply] simp? says simp only [coe_sum, Finset.sum_apply] congr! simpa only [HasSum, A] using (hF K).of_norm #align continuous_map.summable_of_locally_summable_norm ContinuousMap.summable_of_locally_summable_norm end LocalNormalConvergence /-! ### Star structures In this section, if `β` is a normed ⋆-group, then so is the space of continuous functions from `α` to `β`, by using the star operation pointwise. Furthermore, if `α` is compact and `β` is a C⋆-ring, then `C(α, β)` is a C⋆-ring. -/ section NormedSpace variable {α : Type*} {β : Type*} variable [TopologicalSpace α] [NormedAddCommGroup β] [StarAddMonoid β] [NormedStarGroup β] theorem _root_.BoundedContinuousFunction.mkOfCompact_star [CompactSpace α] (f : C(α, β)) : mkOfCompact (star f) = star (mkOfCompact f) := rfl #align bounded_continuous_function.mk_of_compact_star BoundedContinuousFunction.mkOfCompact_star instance [CompactSpace α] : NormedStarGroup C(α, β) where norm_star f := by rw [← BoundedContinuousFunction.norm_mkOfCompact, BoundedContinuousFunction.mkOfCompact_star, norm_star, BoundedContinuousFunction.norm_mkOfCompact] end NormedSpace section CstarRing variable {α : Type*} {β : Type*} variable [TopologicalSpace α] [NormedRing β] [StarRing β] instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f} := by refine' le_antisymm _ _ · rw [← sq, ContinuousMap.norm_le _ (sq_nonneg _)] intro x simp only [ContinuousMap.coe_mul, coe_star, Pi.mul_apply, Pi.star_apply, CstarRing.norm_star_mul_self, ← sq] refine' sq_le_sq' _ _ ·
linarith [norm_nonneg (f x), norm_nonneg f]
instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f} := by refine' le_antisymm _ _ · rw [← sq, ContinuousMap.norm_le _ (sq_nonneg _)] intro x simp only [ContinuousMap.coe_mul, coe_star, Pi.mul_apply, Pi.star_apply, CstarRing.norm_star_mul_self, ← sq] refine' sq_le_sq' _ _ ·
Mathlib.Topology.ContinuousFunction.Compact.541_0.Mig2jTVnn2FLKEB
instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f}
Mathlib_Topology_ContinuousFunction_Compact
case refine'_1.refine'_2 α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : NormedRing β inst✝² : StarRing β inst✝¹ : CompactSpace α inst✝ : CstarRing β f : C(α, β) x : α ⊢ ‖f x‖ ≤ ‖f‖
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢ exact fun x => h (f x) #align continuous_map.comp_right_continuous_map ContinuousMap.compRightContinuousMap @[simp] theorem compRightContinuousMap_apply {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) (g : C(Y, T)) : (compRightContinuousMap T f) g = g.comp f := rfl #align continuous_map.comp_right_continuous_map_apply ContinuousMap.compRightContinuousMap_apply /-- Precomposition by a homeomorphism is itself a homeomorphism between spaces of continuous maps. -/ def compRightHomeomorph {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : X ≃ₜ Y) : C(Y, T) ≃ₜ C(X, T) where toFun := compRightContinuousMap T f.toContinuousMap invFun := compRightContinuousMap T f.symm.toContinuousMap left_inv g := ext fun _ => congr_arg g (f.apply_symm_apply _) right_inv g := ext fun _ => congr_arg g (f.symm_apply_apply _) #align continuous_map.comp_right_homeomorph ContinuousMap.compRightHomeomorph theorem compRightAlgHom_continuous {X Y : Type*} (R A : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [CommSemiring R] [Semiring A] [MetricSpace A] [TopologicalSemiring A] [Algebra R A] (f : C(X, Y)) : Continuous (compRightAlgHom R A f) := map_continuous (compRightContinuousMap A f) #align continuous_map.comp_right_alg_hom_continuous ContinuousMap.compRightAlgHom_continuous end CompRight section LocalNormalConvergence /-! ### Local normal convergence A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of `C(X, E)` (i.e. locally uniform convergence). -/ open TopologicalSpace variable {X : Type*} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] variable {E : Type*} [NormedAddCommGroup E] [CompleteSpace E] theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x simp -- This used to be the end of the proof before leanprover/lean4#2644 erw [restrict_apply, restrict_apply, restrict_apply, restrict_apply] simp? says simp only [coe_sum, Finset.sum_apply] congr! simpa only [HasSum, A] using (hF K).of_norm #align continuous_map.summable_of_locally_summable_norm ContinuousMap.summable_of_locally_summable_norm end LocalNormalConvergence /-! ### Star structures In this section, if `β` is a normed ⋆-group, then so is the space of continuous functions from `α` to `β`, by using the star operation pointwise. Furthermore, if `α` is compact and `β` is a C⋆-ring, then `C(α, β)` is a C⋆-ring. -/ section NormedSpace variable {α : Type*} {β : Type*} variable [TopologicalSpace α] [NormedAddCommGroup β] [StarAddMonoid β] [NormedStarGroup β] theorem _root_.BoundedContinuousFunction.mkOfCompact_star [CompactSpace α] (f : C(α, β)) : mkOfCompact (star f) = star (mkOfCompact f) := rfl #align bounded_continuous_function.mk_of_compact_star BoundedContinuousFunction.mkOfCompact_star instance [CompactSpace α] : NormedStarGroup C(α, β) where norm_star f := by rw [← BoundedContinuousFunction.norm_mkOfCompact, BoundedContinuousFunction.mkOfCompact_star, norm_star, BoundedContinuousFunction.norm_mkOfCompact] end NormedSpace section CstarRing variable {α : Type*} {β : Type*} variable [TopologicalSpace α] [NormedRing β] [StarRing β] instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f} := by refine' le_antisymm _ _ · rw [← sq, ContinuousMap.norm_le _ (sq_nonneg _)] intro x simp only [ContinuousMap.coe_mul, coe_star, Pi.mul_apply, Pi.star_apply, CstarRing.norm_star_mul_self, ← sq] refine' sq_le_sq' _ _ · linarith [norm_nonneg (f x), norm_nonneg f] ·
exact ContinuousMap.norm_coe_le_norm f x
instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f} := by refine' le_antisymm _ _ · rw [← sq, ContinuousMap.norm_le _ (sq_nonneg _)] intro x simp only [ContinuousMap.coe_mul, coe_star, Pi.mul_apply, Pi.star_apply, CstarRing.norm_star_mul_self, ← sq] refine' sq_le_sq' _ _ · linarith [norm_nonneg (f x), norm_nonneg f] ·
Mathlib.Topology.ContinuousFunction.Compact.541_0.Mig2jTVnn2FLKEB
instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f}
Mathlib_Topology_ContinuousFunction_Compact
case refine'_2 α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : NormedRing β inst✝² : StarRing β inst✝¹ : CompactSpace α inst✝ : CstarRing β f : C(α, β) ⊢ ‖f‖ * ‖f‖ ≤ ‖star f * f‖
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢ exact fun x => h (f x) #align continuous_map.comp_right_continuous_map ContinuousMap.compRightContinuousMap @[simp] theorem compRightContinuousMap_apply {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) (g : C(Y, T)) : (compRightContinuousMap T f) g = g.comp f := rfl #align continuous_map.comp_right_continuous_map_apply ContinuousMap.compRightContinuousMap_apply /-- Precomposition by a homeomorphism is itself a homeomorphism between spaces of continuous maps. -/ def compRightHomeomorph {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : X ≃ₜ Y) : C(Y, T) ≃ₜ C(X, T) where toFun := compRightContinuousMap T f.toContinuousMap invFun := compRightContinuousMap T f.symm.toContinuousMap left_inv g := ext fun _ => congr_arg g (f.apply_symm_apply _) right_inv g := ext fun _ => congr_arg g (f.symm_apply_apply _) #align continuous_map.comp_right_homeomorph ContinuousMap.compRightHomeomorph theorem compRightAlgHom_continuous {X Y : Type*} (R A : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [CommSemiring R] [Semiring A] [MetricSpace A] [TopologicalSemiring A] [Algebra R A] (f : C(X, Y)) : Continuous (compRightAlgHom R A f) := map_continuous (compRightContinuousMap A f) #align continuous_map.comp_right_alg_hom_continuous ContinuousMap.compRightAlgHom_continuous end CompRight section LocalNormalConvergence /-! ### Local normal convergence A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of `C(X, E)` (i.e. locally uniform convergence). -/ open TopologicalSpace variable {X : Type*} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] variable {E : Type*} [NormedAddCommGroup E] [CompleteSpace E] theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x simp -- This used to be the end of the proof before leanprover/lean4#2644 erw [restrict_apply, restrict_apply, restrict_apply, restrict_apply] simp? says simp only [coe_sum, Finset.sum_apply] congr! simpa only [HasSum, A] using (hF K).of_norm #align continuous_map.summable_of_locally_summable_norm ContinuousMap.summable_of_locally_summable_norm end LocalNormalConvergence /-! ### Star structures In this section, if `β` is a normed ⋆-group, then so is the space of continuous functions from `α` to `β`, by using the star operation pointwise. Furthermore, if `α` is compact and `β` is a C⋆-ring, then `C(α, β)` is a C⋆-ring. -/ section NormedSpace variable {α : Type*} {β : Type*} variable [TopologicalSpace α] [NormedAddCommGroup β] [StarAddMonoid β] [NormedStarGroup β] theorem _root_.BoundedContinuousFunction.mkOfCompact_star [CompactSpace α] (f : C(α, β)) : mkOfCompact (star f) = star (mkOfCompact f) := rfl #align bounded_continuous_function.mk_of_compact_star BoundedContinuousFunction.mkOfCompact_star instance [CompactSpace α] : NormedStarGroup C(α, β) where norm_star f := by rw [← BoundedContinuousFunction.norm_mkOfCompact, BoundedContinuousFunction.mkOfCompact_star, norm_star, BoundedContinuousFunction.norm_mkOfCompact] end NormedSpace section CstarRing variable {α : Type*} {β : Type*} variable [TopologicalSpace α] [NormedRing β] [StarRing β] instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f} := by refine' le_antisymm _ _ · rw [← sq, ContinuousMap.norm_le _ (sq_nonneg _)] intro x simp only [ContinuousMap.coe_mul, coe_star, Pi.mul_apply, Pi.star_apply, CstarRing.norm_star_mul_self, ← sq] refine' sq_le_sq' _ _ · linarith [norm_nonneg (f x), norm_nonneg f] · exact ContinuousMap.norm_coe_le_norm f x ·
rw [← sq, ← Real.le_sqrt (norm_nonneg _) (norm_nonneg _), ContinuousMap.norm_le _ (Real.sqrt_nonneg _)]
instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f} := by refine' le_antisymm _ _ · rw [← sq, ContinuousMap.norm_le _ (sq_nonneg _)] intro x simp only [ContinuousMap.coe_mul, coe_star, Pi.mul_apply, Pi.star_apply, CstarRing.norm_star_mul_self, ← sq] refine' sq_le_sq' _ _ · linarith [norm_nonneg (f x), norm_nonneg f] · exact ContinuousMap.norm_coe_le_norm f x ·
Mathlib.Topology.ContinuousFunction.Compact.541_0.Mig2jTVnn2FLKEB
instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f}
Mathlib_Topology_ContinuousFunction_Compact
case refine'_2 α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : NormedRing β inst✝² : StarRing β inst✝¹ : CompactSpace α inst✝ : CstarRing β f : C(α, β) ⊢ ∀ (x : α), ‖f x‖ ≤ Real.sqrt ‖star f * f‖
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢ exact fun x => h (f x) #align continuous_map.comp_right_continuous_map ContinuousMap.compRightContinuousMap @[simp] theorem compRightContinuousMap_apply {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) (g : C(Y, T)) : (compRightContinuousMap T f) g = g.comp f := rfl #align continuous_map.comp_right_continuous_map_apply ContinuousMap.compRightContinuousMap_apply /-- Precomposition by a homeomorphism is itself a homeomorphism between spaces of continuous maps. -/ def compRightHomeomorph {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : X ≃ₜ Y) : C(Y, T) ≃ₜ C(X, T) where toFun := compRightContinuousMap T f.toContinuousMap invFun := compRightContinuousMap T f.symm.toContinuousMap left_inv g := ext fun _ => congr_arg g (f.apply_symm_apply _) right_inv g := ext fun _ => congr_arg g (f.symm_apply_apply _) #align continuous_map.comp_right_homeomorph ContinuousMap.compRightHomeomorph theorem compRightAlgHom_continuous {X Y : Type*} (R A : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [CommSemiring R] [Semiring A] [MetricSpace A] [TopologicalSemiring A] [Algebra R A] (f : C(X, Y)) : Continuous (compRightAlgHom R A f) := map_continuous (compRightContinuousMap A f) #align continuous_map.comp_right_alg_hom_continuous ContinuousMap.compRightAlgHom_continuous end CompRight section LocalNormalConvergence /-! ### Local normal convergence A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of `C(X, E)` (i.e. locally uniform convergence). -/ open TopologicalSpace variable {X : Type*} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] variable {E : Type*} [NormedAddCommGroup E] [CompleteSpace E] theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x simp -- This used to be the end of the proof before leanprover/lean4#2644 erw [restrict_apply, restrict_apply, restrict_apply, restrict_apply] simp? says simp only [coe_sum, Finset.sum_apply] congr! simpa only [HasSum, A] using (hF K).of_norm #align continuous_map.summable_of_locally_summable_norm ContinuousMap.summable_of_locally_summable_norm end LocalNormalConvergence /-! ### Star structures In this section, if `β` is a normed ⋆-group, then so is the space of continuous functions from `α` to `β`, by using the star operation pointwise. Furthermore, if `α` is compact and `β` is a C⋆-ring, then `C(α, β)` is a C⋆-ring. -/ section NormedSpace variable {α : Type*} {β : Type*} variable [TopologicalSpace α] [NormedAddCommGroup β] [StarAddMonoid β] [NormedStarGroup β] theorem _root_.BoundedContinuousFunction.mkOfCompact_star [CompactSpace α] (f : C(α, β)) : mkOfCompact (star f) = star (mkOfCompact f) := rfl #align bounded_continuous_function.mk_of_compact_star BoundedContinuousFunction.mkOfCompact_star instance [CompactSpace α] : NormedStarGroup C(α, β) where norm_star f := by rw [← BoundedContinuousFunction.norm_mkOfCompact, BoundedContinuousFunction.mkOfCompact_star, norm_star, BoundedContinuousFunction.norm_mkOfCompact] end NormedSpace section CstarRing variable {α : Type*} {β : Type*} variable [TopologicalSpace α] [NormedRing β] [StarRing β] instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f} := by refine' le_antisymm _ _ · rw [← sq, ContinuousMap.norm_le _ (sq_nonneg _)] intro x simp only [ContinuousMap.coe_mul, coe_star, Pi.mul_apply, Pi.star_apply, CstarRing.norm_star_mul_self, ← sq] refine' sq_le_sq' _ _ · linarith [norm_nonneg (f x), norm_nonneg f] · exact ContinuousMap.norm_coe_le_norm f x · rw [← sq, ← Real.le_sqrt (norm_nonneg _) (norm_nonneg _), ContinuousMap.norm_le _ (Real.sqrt_nonneg _)]
intro x
instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f} := by refine' le_antisymm _ _ · rw [← sq, ContinuousMap.norm_le _ (sq_nonneg _)] intro x simp only [ContinuousMap.coe_mul, coe_star, Pi.mul_apply, Pi.star_apply, CstarRing.norm_star_mul_self, ← sq] refine' sq_le_sq' _ _ · linarith [norm_nonneg (f x), norm_nonneg f] · exact ContinuousMap.norm_coe_le_norm f x · rw [← sq, ← Real.le_sqrt (norm_nonneg _) (norm_nonneg _), ContinuousMap.norm_le _ (Real.sqrt_nonneg _)]
Mathlib.Topology.ContinuousFunction.Compact.541_0.Mig2jTVnn2FLKEB
instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f}
Mathlib_Topology_ContinuousFunction_Compact
case refine'_2 α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : NormedRing β inst✝² : StarRing β inst✝¹ : CompactSpace α inst✝ : CstarRing β f : C(α, β) x : α ⊢ ‖f x‖ ≤ Real.sqrt ‖star f * f‖
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢ exact fun x => h (f x) #align continuous_map.comp_right_continuous_map ContinuousMap.compRightContinuousMap @[simp] theorem compRightContinuousMap_apply {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) (g : C(Y, T)) : (compRightContinuousMap T f) g = g.comp f := rfl #align continuous_map.comp_right_continuous_map_apply ContinuousMap.compRightContinuousMap_apply /-- Precomposition by a homeomorphism is itself a homeomorphism between spaces of continuous maps. -/ def compRightHomeomorph {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : X ≃ₜ Y) : C(Y, T) ≃ₜ C(X, T) where toFun := compRightContinuousMap T f.toContinuousMap invFun := compRightContinuousMap T f.symm.toContinuousMap left_inv g := ext fun _ => congr_arg g (f.apply_symm_apply _) right_inv g := ext fun _ => congr_arg g (f.symm_apply_apply _) #align continuous_map.comp_right_homeomorph ContinuousMap.compRightHomeomorph theorem compRightAlgHom_continuous {X Y : Type*} (R A : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [CommSemiring R] [Semiring A] [MetricSpace A] [TopologicalSemiring A] [Algebra R A] (f : C(X, Y)) : Continuous (compRightAlgHom R A f) := map_continuous (compRightContinuousMap A f) #align continuous_map.comp_right_alg_hom_continuous ContinuousMap.compRightAlgHom_continuous end CompRight section LocalNormalConvergence /-! ### Local normal convergence A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of `C(X, E)` (i.e. locally uniform convergence). -/ open TopologicalSpace variable {X : Type*} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] variable {E : Type*} [NormedAddCommGroup E] [CompleteSpace E] theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x simp -- This used to be the end of the proof before leanprover/lean4#2644 erw [restrict_apply, restrict_apply, restrict_apply, restrict_apply] simp? says simp only [coe_sum, Finset.sum_apply] congr! simpa only [HasSum, A] using (hF K).of_norm #align continuous_map.summable_of_locally_summable_norm ContinuousMap.summable_of_locally_summable_norm end LocalNormalConvergence /-! ### Star structures In this section, if `β` is a normed ⋆-group, then so is the space of continuous functions from `α` to `β`, by using the star operation pointwise. Furthermore, if `α` is compact and `β` is a C⋆-ring, then `C(α, β)` is a C⋆-ring. -/ section NormedSpace variable {α : Type*} {β : Type*} variable [TopologicalSpace α] [NormedAddCommGroup β] [StarAddMonoid β] [NormedStarGroup β] theorem _root_.BoundedContinuousFunction.mkOfCompact_star [CompactSpace α] (f : C(α, β)) : mkOfCompact (star f) = star (mkOfCompact f) := rfl #align bounded_continuous_function.mk_of_compact_star BoundedContinuousFunction.mkOfCompact_star instance [CompactSpace α] : NormedStarGroup C(α, β) where norm_star f := by rw [← BoundedContinuousFunction.norm_mkOfCompact, BoundedContinuousFunction.mkOfCompact_star, norm_star, BoundedContinuousFunction.norm_mkOfCompact] end NormedSpace section CstarRing variable {α : Type*} {β : Type*} variable [TopologicalSpace α] [NormedRing β] [StarRing β] instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f} := by refine' le_antisymm _ _ · rw [← sq, ContinuousMap.norm_le _ (sq_nonneg _)] intro x simp only [ContinuousMap.coe_mul, coe_star, Pi.mul_apply, Pi.star_apply, CstarRing.norm_star_mul_self, ← sq] refine' sq_le_sq' _ _ · linarith [norm_nonneg (f x), norm_nonneg f] · exact ContinuousMap.norm_coe_le_norm f x · rw [← sq, ← Real.le_sqrt (norm_nonneg _) (norm_nonneg _), ContinuousMap.norm_le _ (Real.sqrt_nonneg _)] intro x
rw [Real.le_sqrt (norm_nonneg _) (norm_nonneg _), sq, ← CstarRing.norm_star_mul_self]
instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f} := by refine' le_antisymm _ _ · rw [← sq, ContinuousMap.norm_le _ (sq_nonneg _)] intro x simp only [ContinuousMap.coe_mul, coe_star, Pi.mul_apply, Pi.star_apply, CstarRing.norm_star_mul_self, ← sq] refine' sq_le_sq' _ _ · linarith [norm_nonneg (f x), norm_nonneg f] · exact ContinuousMap.norm_coe_le_norm f x · rw [← sq, ← Real.le_sqrt (norm_nonneg _) (norm_nonneg _), ContinuousMap.norm_le _ (Real.sqrt_nonneg _)] intro x
Mathlib.Topology.ContinuousFunction.Compact.541_0.Mig2jTVnn2FLKEB
instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f}
Mathlib_Topology_ContinuousFunction_Compact
case refine'_2 α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : NormedRing β inst✝² : StarRing β inst✝¹ : CompactSpace α inst✝ : CstarRing β f : C(α, β) x : α ⊢ ‖star (f x) * f x‖ ≤ ‖star f * f‖
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.Topology.ContinuousFunction.Bounded import Mathlib.Topology.UniformSpace.Compact import Mathlib.Topology.CompactOpen import Mathlib.Topology.Sets.Compacts #align_import topology.continuous_function.compact from "leanprover-community/mathlib"@"d3af0609f6db8691dffdc3e1fb7feb7da72698f2" /-! # Continuous functions on a compact space Continuous functions `C(α, β)` from a compact space `α` to a metric space `β` are automatically bounded, and so acquire various structures inherited from `α →ᵇ β`. This file transfers these structures, and restates some lemmas characterising these structures. If you need a lemma which is proved about `α →ᵇ β` but not for `C(α, β)` when `α` is compact, you should restate it here. You can also use `ContinuousMap.equivBoundedOfCompact` to move functions back and forth. -/ noncomputable section open Topology Classical NNReal BoundedContinuousFunction BigOperators open Set Filter Metric open BoundedContinuousFunction namespace ContinuousMap variable {α β E : Type*} [TopologicalSpace α] [CompactSpace α] [MetricSpace β] [NormedAddCommGroup E] section variable (α β) /-- When `α` is compact, the bounded continuous maps `α →ᵇ β` are equivalent to `C(α, β)`. -/ @[simps (config := .asFn)] def equivBoundedOfCompact : C(α, β) ≃ (α →ᵇ β) := ⟨mkOfCompact, BoundedContinuousFunction.toContinuousMap, fun f => by ext rfl, fun f => by ext rfl⟩ #align continuous_map.equiv_bounded_of_compact ContinuousMap.equivBoundedOfCompact theorem uniformInducing_equivBoundedOfCompact : UniformInducing (equivBoundedOfCompact α β) := UniformInducing.mk' (by simp only [hasBasis_compactConvergenceUniformity.mem_iff, uniformity_basis_dist_le.mem_iff] exact fun s => ⟨fun ⟨⟨a, b⟩, ⟨_, ⟨ε, hε, hb⟩⟩, hs⟩ => ⟨{ p | ∀ x, (p.1 x, p.2 x) ∈ b }, ⟨ε, hε, fun _ h x => hb ((dist_le hε.le).mp h x)⟩, fun f g h => hs fun x _ => h x⟩, fun ⟨_, ⟨ε, hε, ht⟩, hs⟩ => ⟨⟨Set.univ, { p | dist p.1 p.2 ≤ ε }⟩, ⟨isCompact_univ, ⟨ε, hε, fun _ h => h⟩⟩, fun ⟨f, g⟩ h => hs _ _ (ht ((dist_le hε.le).mpr fun x => h x (mem_univ x)))⟩⟩) #align continuous_map.uniform_inducing_equiv_bounded_of_compact ContinuousMap.uniformInducing_equivBoundedOfCompact theorem uniformEmbedding_equivBoundedOfCompact : UniformEmbedding (equivBoundedOfCompact α β) := { uniformInducing_equivBoundedOfCompact α β with inj := (equivBoundedOfCompact α β).injective } #align continuous_map.uniform_embedding_equiv_bounded_of_compact ContinuousMap.uniformEmbedding_equivBoundedOfCompact /-- When `α` is compact, the bounded continuous maps `α →ᵇ 𝕜` are additively equivalent to `C(α, 𝕜)`. -/ -- porting note: the following `simps` received a "maximum recursion depth" error -- @[simps! (config := .asFn) apply symm_apply] def addEquivBoundedOfCompact [AddMonoid β] [LipschitzAdd β] : C(α, β) ≃+ (α →ᵇ β) := ({ toContinuousMapAddHom α β, (equivBoundedOfCompact α β).symm with } : (α →ᵇ β) ≃+ C(α, β)).symm #align continuous_map.add_equiv_bounded_of_compact ContinuousMap.addEquivBoundedOfCompact -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_symm_apply [AddMonoid β] [LipschitzAdd β] : ⇑((addEquivBoundedOfCompact α β).symm) = toContinuousMapAddHom α β := rfl -- porting note: added this `simp` lemma manually because of the `simps` error above @[simp] theorem addEquivBoundedOfCompact_apply [AddMonoid β] [LipschitzAdd β] : ⇑(addEquivBoundedOfCompact α β) = mkOfCompact := rfl instance metricSpace : MetricSpace C(α, β) := (uniformEmbedding_equivBoundedOfCompact α β).comapMetricSpace _ #align continuous_map.metric_space ContinuousMap.metricSpace /-- When `α` is compact, and `β` is a metric space, the bounded continuous maps `α →ᵇ β` are isometric to `C(α, β)`. -/ @[simps! (config := .asFn) toEquiv apply symm_apply] def isometryEquivBoundedOfCompact : C(α, β) ≃ᵢ (α →ᵇ β) where isometry_toFun _ _ := rfl toEquiv := equivBoundedOfCompact α β #align continuous_map.isometry_equiv_bounded_of_compact ContinuousMap.isometryEquivBoundedOfCompact end @[simp] theorem _root_.BoundedContinuousFunction.dist_mkOfCompact (f g : C(α, β)) : dist (mkOfCompact f) (mkOfCompact g) = dist f g := rfl #align bounded_continuous_function.dist_mk_of_compact BoundedContinuousFunction.dist_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.dist_toContinuousMap (f g : α →ᵇ β) : dist f.toContinuousMap g.toContinuousMap = dist f g := rfl #align bounded_continuous_function.dist_to_continuous_map BoundedContinuousFunction.dist_toContinuousMap open BoundedContinuousFunction section variable {f g : C(α, β)} {C : ℝ} /-- The pointwise distance is controlled by the distance between functions, by definition. -/ theorem dist_apply_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := by simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply] #align continuous_map.dist_apply_le_dist ContinuousMap.dist_apply_le_dist /-- The distance between two functions is controlled by the supremum of the pointwise distances. -/ theorem dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀ x : α, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le C0, mkOfCompact_apply] #align continuous_map.dist_le ContinuousMap.dist_le theorem dist_le_iff_of_nonempty [Nonempty α] : dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := by simp only [← dist_mkOfCompact, BoundedContinuousFunction.dist_le_iff_of_nonempty, mkOfCompact_apply] #align continuous_map.dist_le_iff_of_nonempty ContinuousMap.dist_le_iff_of_nonempty theorem dist_lt_iff_of_nonempty [Nonempty α] : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by simp only [← dist_mkOfCompact, dist_lt_iff_of_nonempty_compact, mkOfCompact_apply] #align continuous_map.dist_lt_iff_of_nonempty ContinuousMap.dist_lt_iff_of_nonempty theorem dist_lt_of_nonempty [Nonempty α] (w : ∀ x : α, dist (f x) (g x) < C) : dist f g < C := dist_lt_iff_of_nonempty.2 w #align continuous_map.dist_lt_of_nonempty ContinuousMap.dist_lt_of_nonempty theorem dist_lt_iff (C0 : (0 : ℝ) < C) : dist f g < C ↔ ∀ x : α, dist (f x) (g x) < C := by rw [← dist_mkOfCompact, dist_lt_iff_of_compact C0] simp only [mkOfCompact_apply] #align continuous_map.dist_lt_iff ContinuousMap.dist_lt_iff end instance [CompleteSpace β] : CompleteSpace C(α, β) := (isometryEquivBoundedOfCompact α β).completeSpace /-- See also `ContinuousMap.continuous_eval'`. -/ @[continuity] theorem continuous_eval : Continuous fun p : C(α, β) × α => p.1 p.2 := continuous_eval.comp ((isometryEquivBoundedOfCompact α β).continuous.prod_map continuous_id) #align continuous_map.continuous_eval ContinuousMap.continuous_eval -- TODO at some point we will need lemmas characterising this norm! -- At the moment the only way to reason about it is to transfer `f : C(α,E)` back to `α →ᵇ E`. instance : Norm C(α, E) where norm x := dist x 0 @[simp] theorem _root_.BoundedContinuousFunction.norm_mkOfCompact (f : C(α, E)) : ‖mkOfCompact f‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_mk_of_compact BoundedContinuousFunction.norm_mkOfCompact @[simp] theorem _root_.BoundedContinuousFunction.norm_toContinuousMap_eq (f : α →ᵇ E) : ‖f.toContinuousMap‖ = ‖f‖ := rfl #align bounded_continuous_function.norm_to_continuous_map_eq BoundedContinuousFunction.norm_toContinuousMap_eq open BoundedContinuousFunction instance : NormedAddCommGroup C(α, E) := { ContinuousMap.metricSpace _ _, ContinuousMap.instAddCommGroupContinuousMap with dist_eq := fun x y => by rw [← norm_mkOfCompact, ← dist_mkOfCompact, dist_eq_norm, mkOfCompact_sub] dist := dist norm := norm } instance [Nonempty α] [One E] [NormOneClass E] : NormOneClass C(α, E) where norm_one := by simp only [← norm_mkOfCompact, mkOfCompact_one, norm_one] section variable (f : C(α, E)) -- The corresponding lemmas for `BoundedContinuousFunction` are stated with `{f}`, -- and so can not be used in dot notation. theorem norm_coe_le_norm (x : α) : ‖f x‖ ≤ ‖f‖ := (mkOfCompact f).norm_coe_le_norm x #align continuous_map.norm_coe_le_norm ContinuousMap.norm_coe_le_norm /-- Distance between the images of any two points is at most twice the norm of the function. -/ theorem dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ‖f‖ := (mkOfCompact f).dist_le_two_norm x y #align continuous_map.dist_le_two_norm ContinuousMap.dist_le_two_norm /-- The norm of a function is controlled by the supremum of the pointwise norms. -/ theorem norm_le {C : ℝ} (C0 : (0 : ℝ) ≤ C) : ‖f‖ ≤ C ↔ ∀ x : α, ‖f x‖ ≤ C := @BoundedContinuousFunction.norm_le _ _ _ _ (mkOfCompact f) _ C0 #align continuous_map.norm_le ContinuousMap.norm_le theorem norm_le_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ ≤ M ↔ ∀ x, ‖f x‖ ≤ M := @BoundedContinuousFunction.norm_le_of_nonempty _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_le_of_nonempty ContinuousMap.norm_le_of_nonempty theorem norm_lt_iff {M : ℝ} (M0 : 0 < M) : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_compact _ _ _ _ _ (mkOfCompact f) _ M0 #align continuous_map.norm_lt_iff ContinuousMap.norm_lt_iff theorem nnnorm_lt_iff {M : ℝ≥0} (M0 : 0 < M) : ‖f‖₊ < M ↔ ∀ x : α, ‖f x‖₊ < M := f.norm_lt_iff M0 #align continuous_map.nnnorm_lt_iff ContinuousMap.nnnorm_lt_iff theorem norm_lt_iff_of_nonempty [Nonempty α] {M : ℝ} : ‖f‖ < M ↔ ∀ x, ‖f x‖ < M := @BoundedContinuousFunction.norm_lt_iff_of_nonempty_compact _ _ _ _ _ _ (mkOfCompact f) _ #align continuous_map.norm_lt_iff_of_nonempty ContinuousMap.norm_lt_iff_of_nonempty theorem nnnorm_lt_iff_of_nonempty [Nonempty α] {M : ℝ≥0} : ‖f‖₊ < M ↔ ∀ x, ‖f x‖₊ < M := f.norm_lt_iff_of_nonempty #align continuous_map.nnnorm_lt_iff_of_nonempty ContinuousMap.nnnorm_lt_iff_of_nonempty theorem apply_le_norm (f : C(α, ℝ)) (x : α) : f x ≤ ‖f‖ := le_trans (le_abs.mpr (Or.inl (le_refl (f x)))) (f.norm_coe_le_norm x) #align continuous_map.apply_le_norm ContinuousMap.apply_le_norm theorem neg_norm_le_apply (f : C(α, ℝ)) (x : α) : -‖f‖ ≤ f x := le_trans (neg_le_neg (f.norm_coe_le_norm x)) (neg_le.mp (neg_le_abs_self (f x))) #align continuous_map.neg_norm_le_apply ContinuousMap.neg_norm_le_apply theorem norm_eq_iSup_norm : ‖f‖ = ⨆ x : α, ‖f x‖ := (mkOfCompact f).norm_eq_iSup_norm #align continuous_map.norm_eq_supr_norm ContinuousMap.norm_eq_iSup_norm theorem norm_restrict_mono_set {X : Type*} [TopologicalSpace X] (f : C(X, E)) {K L : TopologicalSpace.Compacts X} (hKL : K ≤ L) : ‖f.restrict K‖ ≤ ‖f.restrict L‖ := (norm_le _ (norm_nonneg _)).mpr fun x => norm_coe_le_norm (f.restrict L) <| Set.inclusion hKL x #align continuous_map.norm_restrict_mono_set ContinuousMap.norm_restrict_mono_set end section variable {R : Type*} [NormedRing R] instance : NormedRing C(α, R) := { (inferInstance : NormedAddCommGroup C(α, R)), ContinuousMap.instRingContinuousMap with norm_mul := fun f g => norm_mul_le (mkOfCompact f) (mkOfCompact g) } end section variable {𝕜 : Type*} [NormedField 𝕜] [NormedSpace 𝕜 E] instance normedSpace : NormedSpace 𝕜 C(α, E) where norm_smul_le c f := (norm_smul_le c (mkOfCompact f) : _) #align continuous_map.normed_space ContinuousMap.normedSpace section variable (α 𝕜 E) /-- When `α` is compact and `𝕜` is a normed field, the `𝕜`-algebra of bounded continuous maps `α →ᵇ β` is `𝕜`-linearly isometric to `C(α, β)`. -/ def linearIsometryBoundedOfCompact : C(α, E) ≃ₗᵢ[𝕜] α →ᵇ E := { addEquivBoundedOfCompact α E with map_smul' := fun c f => by ext norm_cast norm_map' := fun f => rfl } #align continuous_map.linear_isometry_bounded_of_compact ContinuousMap.linearIsometryBoundedOfCompact variable {α E} -- to match `BoundedContinuousFunction.evalClm` /-- The evaluation at a point, as a continuous linear map from `C(α, 𝕜)` to `𝕜`. -/ def evalClm (x : α) : C(α, E) →L[𝕜] E := (BoundedContinuousFunction.evalClm 𝕜 x).comp (linearIsometryBoundedOfCompact α E 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_map.eval_clm ContinuousMap.evalClm end -- this lemma and the next are the analogues of those autogenerated by `@[simps]` for -- `equivBoundedOfCompact`, `addEquivBoundedOfCompact` @[simp] theorem linearIsometryBoundedOfCompact_symm_apply (f : α →ᵇ E) : (linearIsometryBoundedOfCompact α E 𝕜).symm f = f.toContinuousMap := rfl #align continuous_map.linear_isometry_bounded_of_compact_symm_apply ContinuousMap.linearIsometryBoundedOfCompact_symm_apply @[simp] theorem linearIsometryBoundedOfCompact_apply_apply (f : C(α, E)) (a : α) : (linearIsometryBoundedOfCompact α E 𝕜 f) a = f a := rfl #align continuous_map.linear_isometry_bounded_of_compact_apply_apply ContinuousMap.linearIsometryBoundedOfCompact_apply_apply @[simp] theorem linearIsometryBoundedOfCompact_toIsometryEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toIsometryEquiv = isometryEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_isometry_equiv ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv @[simp] -- porting note: adjusted LHS because `simpNF` complained it simplified. theorem linearIsometryBoundedOfCompact_toAddEquiv : ((linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv : C(α, E) ≃+ (α →ᵇ E)) = addEquivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_to_add_equiv ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv @[simp] theorem linearIsometryBoundedOfCompact_of_compact_toEquiv : (linearIsometryBoundedOfCompact α E 𝕜).toLinearEquiv.toEquiv = equivBoundedOfCompact α E := rfl #align continuous_map.linear_isometry_bounded_of_compact_of_compact_to_equiv ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv end section variable {𝕜 : Type*} {γ : Type*} [NormedField 𝕜] [NormedRing γ] [NormedAlgebra 𝕜 γ] instance : NormedAlgebra 𝕜 C(α, γ) := { ContinuousMap.normedSpace, ContinuousMap.algebra with } end end ContinuousMap namespace ContinuousMap section UniformContinuity variable {α β : Type*} variable [MetricSpace α] [CompactSpace α] [MetricSpace β] /-! We now set up some declarations making it convenient to use uniform continuity. -/ theorem uniform_continuity (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ∃ δ > 0, ∀ {x y}, dist x y < δ → dist (f x) (f y) < ε := Metric.uniformContinuous_iff.mp (CompactSpace.uniformContinuous_of_continuous f.continuous) ε h #align continuous_map.uniform_continuity ContinuousMap.uniform_continuity -- This definition allows us to separate the choice of some `δ`, -- and the corresponding use of `dist a b < δ → dist (f a) (f b) < ε`, -- even across different declarations. /-- An arbitrarily chosen modulus of uniform continuity for a given function `f` and `ε > 0`. -/ def modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) : ℝ := Classical.choose (uniform_continuity f ε h) #align continuous_map.modulus ContinuousMap.modulus theorem modulus_pos (f : C(α, β)) {ε : ℝ} {h : 0 < ε} : 0 < f.modulus ε h := (Classical.choose_spec (uniform_continuity f ε h)).1 #align continuous_map.modulus_pos ContinuousMap.modulus_pos theorem dist_lt_of_dist_lt_modulus (f : C(α, β)) (ε : ℝ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) : dist (f a) (f b) < ε := (Classical.choose_spec (uniform_continuity f ε h)).2 w #align continuous_map.dist_lt_of_dist_lt_modulus ContinuousMap.dist_lt_of_dist_lt_modulus end UniformContinuity end ContinuousMap section CompLeft variable (X : Type*) {𝕜 β γ : Type*} [TopologicalSpace X] [CompactSpace X] [NontriviallyNormedField 𝕜] variable [NormedAddCommGroup β] [NormedSpace 𝕜 β] [NormedAddCommGroup γ] [NormedSpace 𝕜 γ] open ContinuousMap /-- Postcomposition of continuous functions into a normed module by a continuous linear map is a continuous linear map. Transferred version of `ContinuousLinearMap.compLeftContinuousBounded`, upgraded version of `ContinuousLinearMap.compLeftContinuous`, similar to `LinearMap.compLeft`. -/ protected def ContinuousLinearMap.compLeftContinuousCompact (g : β →L[𝕜] γ) : C(X, β) →L[𝕜] C(X, γ) := (linearIsometryBoundedOfCompact X γ 𝕜).symm.toLinearIsometry.toContinuousLinearMap.comp <| (g.compLeftContinuousBounded X).comp <| (linearIsometryBoundedOfCompact X β 𝕜).toLinearIsometry.toContinuousLinearMap #align continuous_linear_map.comp_left_continuous_compact ContinuousLinearMap.compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.toLinear_compLeftContinuousCompact (g : β →L[𝕜] γ) : (g.compLeftContinuousCompact X : C(X, β) →ₗ[𝕜] C(X, γ)) = g.compLeftContinuous 𝕜 X := by ext f rfl #align continuous_linear_map.to_linear_comp_left_continuous_compact ContinuousLinearMap.toLinear_compLeftContinuousCompact @[simp] theorem ContinuousLinearMap.compLeftContinuousCompact_apply (g : β →L[𝕜] γ) (f : C(X, β)) (x : X) : g.compLeftContinuousCompact X f x = g (f x) := rfl #align continuous_linear_map.comp_left_continuous_compact_apply ContinuousLinearMap.compLeftContinuousCompact_apply end CompLeft namespace ContinuousMap /-! We now setup variations on `compRight* f`, where `f : C(X, Y)` (that is, precomposition by a continuous map), as a morphism `C(Y, T) → C(X, T)`, respecting various types of structure. In particular: * `compRightContinuousMap`, the bundled continuous map (for this we need `X Y` compact). * `compRightHomeomorph`, when we precompose by a homeomorphism. * `compRightAlgHom`, when `T = R` is a topological ring. -/ section CompRight /-- Precomposition by a continuous map is itself a continuous map between spaces of continuous maps. -/ def compRightContinuousMap {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) : C(C(Y, T), C(X, T)) where toFun g := g.comp f continuous_toFun := by refine' Metric.continuous_iff.mpr _ intro g ε ε_pos refine' ⟨ε, ε_pos, fun g' h => _⟩ rw [ContinuousMap.dist_lt_iff ε_pos] at h ⊢ exact fun x => h (f x) #align continuous_map.comp_right_continuous_map ContinuousMap.compRightContinuousMap @[simp] theorem compRightContinuousMap_apply {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : C(X, Y)) (g : C(Y, T)) : (compRightContinuousMap T f) g = g.comp f := rfl #align continuous_map.comp_right_continuous_map_apply ContinuousMap.compRightContinuousMap_apply /-- Precomposition by a homeomorphism is itself a homeomorphism between spaces of continuous maps. -/ def compRightHomeomorph {X Y : Type*} (T : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [MetricSpace T] (f : X ≃ₜ Y) : C(Y, T) ≃ₜ C(X, T) where toFun := compRightContinuousMap T f.toContinuousMap invFun := compRightContinuousMap T f.symm.toContinuousMap left_inv g := ext fun _ => congr_arg g (f.apply_symm_apply _) right_inv g := ext fun _ => congr_arg g (f.symm_apply_apply _) #align continuous_map.comp_right_homeomorph ContinuousMap.compRightHomeomorph theorem compRightAlgHom_continuous {X Y : Type*} (R A : Type*) [TopologicalSpace X] [CompactSpace X] [TopologicalSpace Y] [CompactSpace Y] [CommSemiring R] [Semiring A] [MetricSpace A] [TopologicalSemiring A] [Algebra R A] (f : C(X, Y)) : Continuous (compRightAlgHom R A f) := map_continuous (compRightContinuousMap A f) #align continuous_map.comp_right_alg_hom_continuous ContinuousMap.compRightAlgHom_continuous end CompRight section LocalNormalConvergence /-! ### Local normal convergence A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of `C(X, E)` (i.e. locally uniform convergence). -/ open TopologicalSpace variable {X : Type*} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] variable {E : Type*} [NormedAddCommGroup E] [CompleteSpace E] theorem summable_of_locally_summable_norm {ι : Type*} {F : ι → C(X, E)} (hF : ∀ K : Compacts X, Summable fun i => ‖(F i).restrict K‖) : Summable F := by refine' (ContinuousMap.exists_tendsto_compactOpen_iff_forall _).2 fun K hK => _ lift K to Compacts X using hK have A : ∀ s : Finset ι, restrict (↑K) (∑ i in s, F i) = ∑ i in s, restrict K (F i) := by intro s ext1 x simp -- This used to be the end of the proof before leanprover/lean4#2644 erw [restrict_apply, restrict_apply, restrict_apply, restrict_apply] simp? says simp only [coe_sum, Finset.sum_apply] congr! simpa only [HasSum, A] using (hF K).of_norm #align continuous_map.summable_of_locally_summable_norm ContinuousMap.summable_of_locally_summable_norm end LocalNormalConvergence /-! ### Star structures In this section, if `β` is a normed ⋆-group, then so is the space of continuous functions from `α` to `β`, by using the star operation pointwise. Furthermore, if `α` is compact and `β` is a C⋆-ring, then `C(α, β)` is a C⋆-ring. -/ section NormedSpace variable {α : Type*} {β : Type*} variable [TopologicalSpace α] [NormedAddCommGroup β] [StarAddMonoid β] [NormedStarGroup β] theorem _root_.BoundedContinuousFunction.mkOfCompact_star [CompactSpace α] (f : C(α, β)) : mkOfCompact (star f) = star (mkOfCompact f) := rfl #align bounded_continuous_function.mk_of_compact_star BoundedContinuousFunction.mkOfCompact_star instance [CompactSpace α] : NormedStarGroup C(α, β) where norm_star f := by rw [← BoundedContinuousFunction.norm_mkOfCompact, BoundedContinuousFunction.mkOfCompact_star, norm_star, BoundedContinuousFunction.norm_mkOfCompact] end NormedSpace section CstarRing variable {α : Type*} {β : Type*} variable [TopologicalSpace α] [NormedRing β] [StarRing β] instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f} := by refine' le_antisymm _ _ · rw [← sq, ContinuousMap.norm_le _ (sq_nonneg _)] intro x simp only [ContinuousMap.coe_mul, coe_star, Pi.mul_apply, Pi.star_apply, CstarRing.norm_star_mul_self, ← sq] refine' sq_le_sq' _ _ · linarith [norm_nonneg (f x), norm_nonneg f] · exact ContinuousMap.norm_coe_le_norm f x · rw [← sq, ← Real.le_sqrt (norm_nonneg _) (norm_nonneg _), ContinuousMap.norm_le _ (Real.sqrt_nonneg _)] intro x rw [Real.le_sqrt (norm_nonneg _) (norm_nonneg _), sq, ← CstarRing.norm_star_mul_self]
exact ContinuousMap.norm_coe_le_norm (star f * f) x
instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f} := by refine' le_antisymm _ _ · rw [← sq, ContinuousMap.norm_le _ (sq_nonneg _)] intro x simp only [ContinuousMap.coe_mul, coe_star, Pi.mul_apply, Pi.star_apply, CstarRing.norm_star_mul_self, ← sq] refine' sq_le_sq' _ _ · linarith [norm_nonneg (f x), norm_nonneg f] · exact ContinuousMap.norm_coe_le_norm f x · rw [← sq, ← Real.le_sqrt (norm_nonneg _) (norm_nonneg _), ContinuousMap.norm_le _ (Real.sqrt_nonneg _)] intro x rw [Real.le_sqrt (norm_nonneg _) (norm_nonneg _), sq, ← CstarRing.norm_star_mul_self]
Mathlib.Topology.ContinuousFunction.Compact.541_0.Mig2jTVnn2FLKEB
instance [CompactSpace α] [CstarRing β] : CstarRing C(α, β) where norm_star_mul_self {f}
Mathlib_Topology_ContinuousFunction_Compact
⊢ Tendsto (fun n => ↑(numDerangements n) / ↑(Nat.factorial n)) atTop (𝓝 (Real.exp (-1)))
/- Copyright (c) 2021 Henry Swanson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Henry Swanson, Patrick Massot -/ import Mathlib.Analysis.SpecialFunctions.Exponential import Mathlib.Combinatorics.Derangements.Finite import Mathlib.Order.Filter.Basic #align_import combinatorics.derangements.exponential from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # Derangement exponential series This file proves that the probability of a permutation on n elements being a derangement is 1/e. The specific lemma is `numDerangements_tendsto_inv_e`. -/ open Filter NormedSpace open scoped BigOperators open scoped Topology theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always
let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always
Mathlib.Combinatorics.Derangements.Exponential.26_0.d2ZjWMu7TGZefpO
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1)))
Mathlib_Combinatorics_Derangements_Exponential
s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1) ^ k / ↑(Nat.factorial k) ⊢ Tendsto (fun n => ↑(numDerangements n) / ↑(Nat.factorial n)) atTop (𝓝 (Real.exp (-1)))
/- Copyright (c) 2021 Henry Swanson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Henry Swanson, Patrick Massot -/ import Mathlib.Analysis.SpecialFunctions.Exponential import Mathlib.Combinatorics.Derangements.Finite import Mathlib.Order.Filter.Basic #align_import combinatorics.derangements.exponential from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # Derangement exponential series This file proves that the probability of a permutation on n elements being a derangement is 1/e. The specific lemma is `numDerangements_tendsto_inv_e`. -/ open Filter NormedSpace open scoped BigOperators open scoped Topology theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial
suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ] exact expSeries_div_hasSum_exp ℝ (-1 : ℝ)
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial
Mathlib.Combinatorics.Derangements.Exponential.26_0.d2ZjWMu7TGZefpO
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1)))
Mathlib_Combinatorics_Derangements_Exponential
s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1) ^ k / ↑(Nat.factorial k) this : ∀ (n : ℕ), ↑(numDerangements n) / ↑(Nat.factorial n) = s (n + 1) ⊢ Tendsto (fun n => ↑(numDerangements n) / ↑(Nat.factorial n)) atTop (𝓝 (Real.exp (-1)))
/- Copyright (c) 2021 Henry Swanson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Henry Swanson, Patrick Massot -/ import Mathlib.Analysis.SpecialFunctions.Exponential import Mathlib.Combinatorics.Derangements.Finite import Mathlib.Order.Filter.Basic #align_import combinatorics.derangements.exponential from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # Derangement exponential series This file proves that the probability of a permutation on n elements being a derangement is 1/e. The specific lemma is `numDerangements_tendsto_inv_e`. -/ open Filter NormedSpace open scoped BigOperators open scoped Topology theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by
simp_rw [this]
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by
Mathlib.Combinatorics.Derangements.Exponential.26_0.d2ZjWMu7TGZefpO
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1)))
Mathlib_Combinatorics_Derangements_Exponential
s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1) ^ k / ↑(Nat.factorial k) this : ∀ (n : ℕ), ↑(numDerangements n) / ↑(Nat.factorial n) = s (n + 1) ⊢ Tendsto (fun n => ∑ k in Finset.range (n + 1), (-1) ^ k / ↑(Nat.factorial k)) atTop (𝓝 (Real.exp (-1)))
/- Copyright (c) 2021 Henry Swanson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Henry Swanson, Patrick Massot -/ import Mathlib.Analysis.SpecialFunctions.Exponential import Mathlib.Combinatorics.Derangements.Finite import Mathlib.Order.Filter.Basic #align_import combinatorics.derangements.exponential from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # Derangement exponential series This file proves that the probability of a permutation on n elements being a derangement is 1/e. The specific lemma is `numDerangements_tendsto_inv_e`. -/ open Filter NormedSpace open scoped BigOperators open scoped Topology theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum
rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1]
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum
Mathlib.Combinatorics.Derangements.Exponential.26_0.d2ZjWMu7TGZefpO
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1)))
Mathlib_Combinatorics_Derangements_Exponential
s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1) ^ k / ↑(Nat.factorial k) this : ∀ (n : ℕ), ↑(numDerangements n) / ↑(Nat.factorial n) = s (n + 1) ⊢ Tendsto (fun n => ∑ k in Finset.range n, (-1) ^ k / ↑(Nat.factorial k)) atTop (𝓝 (Real.exp (-1)))
/- Copyright (c) 2021 Henry Swanson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Henry Swanson, Patrick Massot -/ import Mathlib.Analysis.SpecialFunctions.Exponential import Mathlib.Combinatorics.Derangements.Finite import Mathlib.Order.Filter.Basic #align_import combinatorics.derangements.exponential from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # Derangement exponential series This file proves that the probability of a permutation on n elements being a derangement is 1/e. The specific lemma is `numDerangements_tendsto_inv_e`. -/ open Filter NormedSpace open scoped BigOperators open scoped Topology theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1]
apply HasSum.tendsto_sum_nat
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1]
Mathlib.Combinatorics.Derangements.Exponential.26_0.d2ZjWMu7TGZefpO
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1)))
Mathlib_Combinatorics_Derangements_Exponential
case h s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1) ^ k / ↑(Nat.factorial k) this : ∀ (n : ℕ), ↑(numDerangements n) / ↑(Nat.factorial n) = s (n + 1) ⊢ HasSum (fun i => (-1) ^ i / ↑(Nat.factorial i)) (Real.exp (-1))
/- Copyright (c) 2021 Henry Swanson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Henry Swanson, Patrick Massot -/ import Mathlib.Analysis.SpecialFunctions.Exponential import Mathlib.Combinatorics.Derangements.Finite import Mathlib.Order.Filter.Basic #align_import combinatorics.derangements.exponential from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # Derangement exponential series This file proves that the probability of a permutation on n elements being a derangement is 1/e. The specific lemma is `numDerangements_tendsto_inv_e`. -/ open Filter NormedSpace open scoped BigOperators open scoped Topology theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma
rw [Real.exp_eq_exp_ℝ]
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma
Mathlib.Combinatorics.Derangements.Exponential.26_0.d2ZjWMu7TGZefpO
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1)))
Mathlib_Combinatorics_Derangements_Exponential
case h s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1) ^ k / ↑(Nat.factorial k) this : ∀ (n : ℕ), ↑(numDerangements n) / ↑(Nat.factorial n) = s (n + 1) ⊢ HasSum (fun i => (-1) ^ i / ↑(Nat.factorial i)) (exp ℝ (-1))
/- Copyright (c) 2021 Henry Swanson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Henry Swanson, Patrick Massot -/ import Mathlib.Analysis.SpecialFunctions.Exponential import Mathlib.Combinatorics.Derangements.Finite import Mathlib.Order.Filter.Basic #align_import combinatorics.derangements.exponential from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # Derangement exponential series This file proves that the probability of a permutation on n elements being a derangement is 1/e. The specific lemma is `numDerangements_tendsto_inv_e`. -/ open Filter NormedSpace open scoped BigOperators open scoped Topology theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ]
exact expSeries_div_hasSum_exp ℝ (-1 : ℝ)
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ]
Mathlib.Combinatorics.Derangements.Exponential.26_0.d2ZjWMu7TGZefpO
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1)))
Mathlib_Combinatorics_Derangements_Exponential
s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1) ^ k / ↑(Nat.factorial k) ⊢ ∀ (n : ℕ), ↑(numDerangements n) / ↑(Nat.factorial n) = s (n + 1)
/- Copyright (c) 2021 Henry Swanson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Henry Swanson, Patrick Massot -/ import Mathlib.Analysis.SpecialFunctions.Exponential import Mathlib.Combinatorics.Derangements.Finite import Mathlib.Order.Filter.Basic #align_import combinatorics.derangements.exponential from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # Derangement exponential series This file proves that the probability of a permutation on n elements being a derangement is 1/e. The specific lemma is `numDerangements_tendsto_inv_e`. -/ open Filter NormedSpace open scoped BigOperators open scoped Topology theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ] exact expSeries_div_hasSum_exp ℝ (-1 : ℝ)
intro n
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ] exact expSeries_div_hasSum_exp ℝ (-1 : ℝ)
Mathlib.Combinatorics.Derangements.Exponential.26_0.d2ZjWMu7TGZefpO
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1)))
Mathlib_Combinatorics_Derangements_Exponential
s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1) ^ k / ↑(Nat.factorial k) n : ℕ ⊢ ↑(numDerangements n) / ↑(Nat.factorial n) = s (n + 1)
/- Copyright (c) 2021 Henry Swanson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Henry Swanson, Patrick Massot -/ import Mathlib.Analysis.SpecialFunctions.Exponential import Mathlib.Combinatorics.Derangements.Finite import Mathlib.Order.Filter.Basic #align_import combinatorics.derangements.exponential from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # Derangement exponential series This file proves that the probability of a permutation on n elements being a derangement is 1/e. The specific lemma is `numDerangements_tendsto_inv_e`. -/ open Filter NormedSpace open scoped BigOperators open scoped Topology theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ] exact expSeries_div_hasSum_exp ℝ (-1 : ℝ) intro n
rw [← Int.cast_ofNat, numDerangements_sum]
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ] exact expSeries_div_hasSum_exp ℝ (-1 : ℝ) intro n
Mathlib.Combinatorics.Derangements.Exponential.26_0.d2ZjWMu7TGZefpO
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1)))
Mathlib_Combinatorics_Derangements_Exponential
s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1) ^ k / ↑(Nat.factorial k) n : ℕ ⊢ ↑(∑ k in Finset.range (n + 1), (-1) ^ k * ↑(Nat.ascFactorial k (n - k))) / ↑(Nat.factorial n) = s (n + 1)
/- Copyright (c) 2021 Henry Swanson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Henry Swanson, Patrick Massot -/ import Mathlib.Analysis.SpecialFunctions.Exponential import Mathlib.Combinatorics.Derangements.Finite import Mathlib.Order.Filter.Basic #align_import combinatorics.derangements.exponential from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # Derangement exponential series This file proves that the probability of a permutation on n elements being a derangement is 1/e. The specific lemma is `numDerangements_tendsto_inv_e`. -/ open Filter NormedSpace open scoped BigOperators open scoped Topology theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ] exact expSeries_div_hasSum_exp ℝ (-1 : ℝ) intro n rw [← Int.cast_ofNat, numDerangements_sum]
push_cast
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ] exact expSeries_div_hasSum_exp ℝ (-1 : ℝ) intro n rw [← Int.cast_ofNat, numDerangements_sum]
Mathlib.Combinatorics.Derangements.Exponential.26_0.d2ZjWMu7TGZefpO
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1)))
Mathlib_Combinatorics_Derangements_Exponential
s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1) ^ k / ↑(Nat.factorial k) n : ℕ ⊢ (∑ x in Finset.range (n + 1), (-1) ^ x * ↑(Nat.ascFactorial x (n - x))) / ↑(Nat.factorial n) = ∑ k in Finset.range (n + 1), (-1) ^ k / ↑(Nat.factorial k)
/- Copyright (c) 2021 Henry Swanson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Henry Swanson, Patrick Massot -/ import Mathlib.Analysis.SpecialFunctions.Exponential import Mathlib.Combinatorics.Derangements.Finite import Mathlib.Order.Filter.Basic #align_import combinatorics.derangements.exponential from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # Derangement exponential series This file proves that the probability of a permutation on n elements being a derangement is 1/e. The specific lemma is `numDerangements_tendsto_inv_e`. -/ open Filter NormedSpace open scoped BigOperators open scoped Topology theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ] exact expSeries_div_hasSum_exp ℝ (-1 : ℝ) intro n rw [← Int.cast_ofNat, numDerangements_sum] push_cast
rw [Finset.sum_div]
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ] exact expSeries_div_hasSum_exp ℝ (-1 : ℝ) intro n rw [← Int.cast_ofNat, numDerangements_sum] push_cast
Mathlib.Combinatorics.Derangements.Exponential.26_0.d2ZjWMu7TGZefpO
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1)))
Mathlib_Combinatorics_Derangements_Exponential
s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1) ^ k / ↑(Nat.factorial k) n : ℕ ⊢ ∑ x in Finset.range (n + 1), (-1) ^ x * ↑(Nat.ascFactorial x (n - x)) / ↑(Nat.factorial n) = ∑ k in Finset.range (n + 1), (-1) ^ k / ↑(Nat.factorial k)
/- Copyright (c) 2021 Henry Swanson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Henry Swanson, Patrick Massot -/ import Mathlib.Analysis.SpecialFunctions.Exponential import Mathlib.Combinatorics.Derangements.Finite import Mathlib.Order.Filter.Basic #align_import combinatorics.derangements.exponential from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # Derangement exponential series This file proves that the probability of a permutation on n elements being a derangement is 1/e. The specific lemma is `numDerangements_tendsto_inv_e`. -/ open Filter NormedSpace open scoped BigOperators open scoped Topology theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ] exact expSeries_div_hasSum_exp ℝ (-1 : ℝ) intro n rw [← Int.cast_ofNat, numDerangements_sum] push_cast rw [Finset.sum_div] -- get down to individual terms
refine' Finset.sum_congr (refl _) _
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ] exact expSeries_div_hasSum_exp ℝ (-1 : ℝ) intro n rw [← Int.cast_ofNat, numDerangements_sum] push_cast rw [Finset.sum_div] -- get down to individual terms
Mathlib.Combinatorics.Derangements.Exponential.26_0.d2ZjWMu7TGZefpO
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1)))
Mathlib_Combinatorics_Derangements_Exponential
s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1) ^ k / ↑(Nat.factorial k) n : ℕ ⊢ ∀ x ∈ Finset.range (n + 1), (-1) ^ x * ↑(Nat.ascFactorial x (n - x)) / ↑(Nat.factorial n) = (-1) ^ x / ↑(Nat.factorial x)
/- Copyright (c) 2021 Henry Swanson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Henry Swanson, Patrick Massot -/ import Mathlib.Analysis.SpecialFunctions.Exponential import Mathlib.Combinatorics.Derangements.Finite import Mathlib.Order.Filter.Basic #align_import combinatorics.derangements.exponential from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # Derangement exponential series This file proves that the probability of a permutation on n elements being a derangement is 1/e. The specific lemma is `numDerangements_tendsto_inv_e`. -/ open Filter NormedSpace open scoped BigOperators open scoped Topology theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ] exact expSeries_div_hasSum_exp ℝ (-1 : ℝ) intro n rw [← Int.cast_ofNat, numDerangements_sum] push_cast rw [Finset.sum_div] -- get down to individual terms refine' Finset.sum_congr (refl _) _
intro k hk
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ] exact expSeries_div_hasSum_exp ℝ (-1 : ℝ) intro n rw [← Int.cast_ofNat, numDerangements_sum] push_cast rw [Finset.sum_div] -- get down to individual terms refine' Finset.sum_congr (refl _) _
Mathlib.Combinatorics.Derangements.Exponential.26_0.d2ZjWMu7TGZefpO
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1)))
Mathlib_Combinatorics_Derangements_Exponential
s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1) ^ k / ↑(Nat.factorial k) n k : ℕ hk : k ∈ Finset.range (n + 1) ⊢ (-1) ^ k * ↑(Nat.ascFactorial k (n - k)) / ↑(Nat.factorial n) = (-1) ^ k / ↑(Nat.factorial k)
/- Copyright (c) 2021 Henry Swanson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Henry Swanson, Patrick Massot -/ import Mathlib.Analysis.SpecialFunctions.Exponential import Mathlib.Combinatorics.Derangements.Finite import Mathlib.Order.Filter.Basic #align_import combinatorics.derangements.exponential from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # Derangement exponential series This file proves that the probability of a permutation on n elements being a derangement is 1/e. The specific lemma is `numDerangements_tendsto_inv_e`. -/ open Filter NormedSpace open scoped BigOperators open scoped Topology theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ] exact expSeries_div_hasSum_exp ℝ (-1 : ℝ) intro n rw [← Int.cast_ofNat, numDerangements_sum] push_cast rw [Finset.sum_div] -- get down to individual terms refine' Finset.sum_congr (refl _) _ intro k hk
have h_le : k ≤ n := Finset.mem_range_succ_iff.mp hk
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ] exact expSeries_div_hasSum_exp ℝ (-1 : ℝ) intro n rw [← Int.cast_ofNat, numDerangements_sum] push_cast rw [Finset.sum_div] -- get down to individual terms refine' Finset.sum_congr (refl _) _ intro k hk
Mathlib.Combinatorics.Derangements.Exponential.26_0.d2ZjWMu7TGZefpO
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1)))
Mathlib_Combinatorics_Derangements_Exponential
s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1) ^ k / ↑(Nat.factorial k) n k : ℕ hk : k ∈ Finset.range (n + 1) h_le : k ≤ n ⊢ (-1) ^ k * ↑(Nat.ascFactorial k (n - k)) / ↑(Nat.factorial n) = (-1) ^ k / ↑(Nat.factorial k)
/- Copyright (c) 2021 Henry Swanson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Henry Swanson, Patrick Massot -/ import Mathlib.Analysis.SpecialFunctions.Exponential import Mathlib.Combinatorics.Derangements.Finite import Mathlib.Order.Filter.Basic #align_import combinatorics.derangements.exponential from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # Derangement exponential series This file proves that the probability of a permutation on n elements being a derangement is 1/e. The specific lemma is `numDerangements_tendsto_inv_e`. -/ open Filter NormedSpace open scoped BigOperators open scoped Topology theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ] exact expSeries_div_hasSum_exp ℝ (-1 : ℝ) intro n rw [← Int.cast_ofNat, numDerangements_sum] push_cast rw [Finset.sum_div] -- get down to individual terms refine' Finset.sum_congr (refl _) _ intro k hk have h_le : k ≤ n := Finset.mem_range_succ_iff.mp hk
rw [Nat.ascFactorial_eq_div, add_tsub_cancel_of_le h_le]
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ] exact expSeries_div_hasSum_exp ℝ (-1 : ℝ) intro n rw [← Int.cast_ofNat, numDerangements_sum] push_cast rw [Finset.sum_div] -- get down to individual terms refine' Finset.sum_congr (refl _) _ intro k hk have h_le : k ≤ n := Finset.mem_range_succ_iff.mp hk
Mathlib.Combinatorics.Derangements.Exponential.26_0.d2ZjWMu7TGZefpO
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1)))
Mathlib_Combinatorics_Derangements_Exponential
s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1) ^ k / ↑(Nat.factorial k) n k : ℕ hk : k ∈ Finset.range (n + 1) h_le : k ≤ n ⊢ (-1) ^ k * ↑(Nat.factorial n / Nat.factorial k) / ↑(Nat.factorial n) = (-1) ^ k / ↑(Nat.factorial k)
/- Copyright (c) 2021 Henry Swanson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Henry Swanson, Patrick Massot -/ import Mathlib.Analysis.SpecialFunctions.Exponential import Mathlib.Combinatorics.Derangements.Finite import Mathlib.Order.Filter.Basic #align_import combinatorics.derangements.exponential from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # Derangement exponential series This file proves that the probability of a permutation on n elements being a derangement is 1/e. The specific lemma is `numDerangements_tendsto_inv_e`. -/ open Filter NormedSpace open scoped BigOperators open scoped Topology theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ] exact expSeries_div_hasSum_exp ℝ (-1 : ℝ) intro n rw [← Int.cast_ofNat, numDerangements_sum] push_cast rw [Finset.sum_div] -- get down to individual terms refine' Finset.sum_congr (refl _) _ intro k hk have h_le : k ≤ n := Finset.mem_range_succ_iff.mp hk rw [Nat.ascFactorial_eq_div, add_tsub_cancel_of_le h_le]
push_cast [Nat.factorial_dvd_factorial h_le]
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ] exact expSeries_div_hasSum_exp ℝ (-1 : ℝ) intro n rw [← Int.cast_ofNat, numDerangements_sum] push_cast rw [Finset.sum_div] -- get down to individual terms refine' Finset.sum_congr (refl _) _ intro k hk have h_le : k ≤ n := Finset.mem_range_succ_iff.mp hk rw [Nat.ascFactorial_eq_div, add_tsub_cancel_of_le h_le]
Mathlib.Combinatorics.Derangements.Exponential.26_0.d2ZjWMu7TGZefpO
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1)))
Mathlib_Combinatorics_Derangements_Exponential
s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1) ^ k / ↑(Nat.factorial k) n k : ℕ hk : k ∈ Finset.range (n + 1) h_le : k ≤ n ⊢ (-1) ^ k * (↑(Nat.factorial n) / ↑(Nat.factorial k)) / ↑(Nat.factorial n) = (-1) ^ k / ↑(Nat.factorial k)
/- Copyright (c) 2021 Henry Swanson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Henry Swanson, Patrick Massot -/ import Mathlib.Analysis.SpecialFunctions.Exponential import Mathlib.Combinatorics.Derangements.Finite import Mathlib.Order.Filter.Basic #align_import combinatorics.derangements.exponential from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # Derangement exponential series This file proves that the probability of a permutation on n elements being a derangement is 1/e. The specific lemma is `numDerangements_tendsto_inv_e`. -/ open Filter NormedSpace open scoped BigOperators open scoped Topology theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ] exact expSeries_div_hasSum_exp ℝ (-1 : ℝ) intro n rw [← Int.cast_ofNat, numDerangements_sum] push_cast rw [Finset.sum_div] -- get down to individual terms refine' Finset.sum_congr (refl _) _ intro k hk have h_le : k ≤ n := Finset.mem_range_succ_iff.mp hk rw [Nat.ascFactorial_eq_div, add_tsub_cancel_of_le h_le] push_cast [Nat.factorial_dvd_factorial h_le]
field_simp [Nat.factorial_ne_zero]
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ] exact expSeries_div_hasSum_exp ℝ (-1 : ℝ) intro n rw [← Int.cast_ofNat, numDerangements_sum] push_cast rw [Finset.sum_div] -- get down to individual terms refine' Finset.sum_congr (refl _) _ intro k hk have h_le : k ≤ n := Finset.mem_range_succ_iff.mp hk rw [Nat.ascFactorial_eq_div, add_tsub_cancel_of_le h_le] push_cast [Nat.factorial_dvd_factorial h_le]
Mathlib.Combinatorics.Derangements.Exponential.26_0.d2ZjWMu7TGZefpO
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1)))
Mathlib_Combinatorics_Derangements_Exponential
s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1) ^ k / ↑(Nat.factorial k) n k : ℕ hk : k ∈ Finset.range (n + 1) h_le : k ≤ n ⊢ (-1) ^ k * ↑(Nat.factorial n) * ↑(Nat.factorial k) = (-1) ^ k * (↑(Nat.factorial k) * ↑(Nat.factorial n))
/- Copyright (c) 2021 Henry Swanson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Henry Swanson, Patrick Massot -/ import Mathlib.Analysis.SpecialFunctions.Exponential import Mathlib.Combinatorics.Derangements.Finite import Mathlib.Order.Filter.Basic #align_import combinatorics.derangements.exponential from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982" /-! # Derangement exponential series This file proves that the probability of a permutation on n elements being a derangement is 1/e. The specific lemma is `numDerangements_tendsto_inv_e`. -/ open Filter NormedSpace open scoped BigOperators open scoped Topology theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ] exact expSeries_div_hasSum_exp ℝ (-1 : ℝ) intro n rw [← Int.cast_ofNat, numDerangements_sum] push_cast rw [Finset.sum_div] -- get down to individual terms refine' Finset.sum_congr (refl _) _ intro k hk have h_le : k ≤ n := Finset.mem_range_succ_iff.mp hk rw [Nat.ascFactorial_eq_div, add_tsub_cancel_of_le h_le] push_cast [Nat.factorial_dvd_factorial h_le] field_simp [Nat.factorial_ne_zero]
ring
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1))) := by -- we show that d(n)/n! is the partial sum of exp(-1), but offset by 1. -- this isn't entirely obvious, since we have to ensure that asc_factorial and -- factorial interact in the right way, e.g., that k ≤ n always let s : ℕ → ℝ := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial suffices ∀ n : ℕ, (numDerangements n : ℝ) / n.factorial = s (n + 1) by simp_rw [this] -- shift the function by 1, and then use the fact that the partial sums -- converge to the infinite sum rw [tendsto_add_atTop_iff_nat (f := fun n => ∑ k in Finset.range n, (-1 : ℝ) ^ k / k.factorial) 1] apply HasSum.tendsto_sum_nat -- there's no specific lemma for ℝ that ∑ x^k/k! sums to exp(x), but it's -- true in more general fields, so use that lemma rw [Real.exp_eq_exp_ℝ] exact expSeries_div_hasSum_exp ℝ (-1 : ℝ) intro n rw [← Int.cast_ofNat, numDerangements_sum] push_cast rw [Finset.sum_div] -- get down to individual terms refine' Finset.sum_congr (refl _) _ intro k hk have h_le : k ≤ n := Finset.mem_range_succ_iff.mp hk rw [Nat.ascFactorial_eq_div, add_tsub_cancel_of_le h_le] push_cast [Nat.factorial_dvd_factorial h_le] field_simp [Nat.factorial_ne_zero]
Mathlib.Combinatorics.Derangements.Exponential.26_0.d2ZjWMu7TGZefpO
theorem numDerangements_tendsto_inv_e : Tendsto (fun n => (numDerangements n : ℝ) / n.factorial) atTop (𝓝 (Real.exp (-1)))
Mathlib_Combinatorics_Derangements_Exponential
α : Sort u_1 p q r : Prop inst✝¹ : Decidable p inst✝ : Decidable q a✝ b✝ c✝ : α a : p → α b : ¬p → q → α c : ¬p → ¬q → α ⊢ (dite p a fun hp => dite q (b hp) (c hp)) = if hq : q then dite p a fun hp => b hp hq else dite p a fun hp => c hp hq
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by
split_ifs
theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by
Mathlib.Logic.Lemmas.28_0.END1WfxnNs4h6Zj
theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq
Mathlib_Logic_Lemmas
case pos α : Sort u_1 p q r : Prop inst✝¹ : Decidable p inst✝ : Decidable q a✝ b✝ c✝ : α a : p → α b : ¬p → q → α c : ¬p → ¬q → α h✝¹ : p h✝ : q ⊢ a h✝¹ = a h✝¹
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;>
rfl
theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;>
Mathlib.Logic.Lemmas.28_0.END1WfxnNs4h6Zj
theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq
Mathlib_Logic_Lemmas
case neg α : Sort u_1 p q r : Prop inst✝¹ : Decidable p inst✝ : Decidable q a✝ b✝ c✝ : α a : p → α b : ¬p → q → α c : ¬p → ¬q → α h✝¹ : p h✝ : ¬q ⊢ a h✝¹ = a h✝¹
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;>
rfl
theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;>
Mathlib.Logic.Lemmas.28_0.END1WfxnNs4h6Zj
theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq
Mathlib_Logic_Lemmas
case pos α : Sort u_1 p q r : Prop inst✝¹ : Decidable p inst✝ : Decidable q a✝ b✝ c✝ : α a : p → α b : ¬p → q → α c : ¬p → ¬q → α h✝¹ : ¬p h✝ : q ⊢ b h✝¹ h✝ = b h✝¹ (_ : q)
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;>
rfl
theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;>
Mathlib.Logic.Lemmas.28_0.END1WfxnNs4h6Zj
theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq
Mathlib_Logic_Lemmas
case neg α : Sort u_1 p q r : Prop inst✝¹ : Decidable p inst✝ : Decidable q a✝ b✝ c✝ : α a : p → α b : ¬p → q → α c : ¬p → ¬q → α h✝¹ : ¬p h✝ : ¬q ⊢ c h✝¹ h✝ = c h✝¹ (_ : ¬q)
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;>
rfl
theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;>
Mathlib.Logic.Lemmas.28_0.END1WfxnNs4h6Zj
theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq
Mathlib_Logic_Lemmas
α : Sort u_1 p q r : Prop inst✝¹ : Decidable p inst✝ : Decidable q a✝ b✝ c✝ : α a : p → q → α b : p → ¬q → α c : ¬p → α ⊢ dite p (fun hp => dite q (a hp) (b hp)) c = if hq : q then dite p (fun hp => a hp hq) c else dite p (fun hp => b hp hq) c
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;> rfl #align dite_dite_distrib_left dite_dite_distrib_left theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by
split_ifs
theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by
Mathlib.Logic.Lemmas.34_0.END1WfxnNs4h6Zj
theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c
Mathlib_Logic_Lemmas
case pos α : Sort u_1 p q r : Prop inst✝¹ : Decidable p inst✝ : Decidable q a✝ b✝ c✝ : α a : p → q → α b : p → ¬q → α c : ¬p → α h✝¹ : p h✝ : q ⊢ a h✝¹ h✝ = a h✝¹ (_ : q)
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;> rfl #align dite_dite_distrib_left dite_dite_distrib_left theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by split_ifs <;>
rfl
theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by split_ifs <;>
Mathlib.Logic.Lemmas.34_0.END1WfxnNs4h6Zj
theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c
Mathlib_Logic_Lemmas
case neg α : Sort u_1 p q r : Prop inst✝¹ : Decidable p inst✝ : Decidable q a✝ b✝ c✝ : α a : p → q → α b : p → ¬q → α c : ¬p → α h✝¹ : p h✝ : ¬q ⊢ b h✝¹ h✝ = b h✝¹ (_ : ¬q)
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;> rfl #align dite_dite_distrib_left dite_dite_distrib_left theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by split_ifs <;>
rfl
theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by split_ifs <;>
Mathlib.Logic.Lemmas.34_0.END1WfxnNs4h6Zj
theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c
Mathlib_Logic_Lemmas
case pos α : Sort u_1 p q r : Prop inst✝¹ : Decidable p inst✝ : Decidable q a✝ b✝ c✝ : α a : p → q → α b : p → ¬q → α c : ¬p → α h✝¹ : ¬p h✝ : q ⊢ c h✝¹ = c h✝¹
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;> rfl #align dite_dite_distrib_left dite_dite_distrib_left theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by split_ifs <;>
rfl
theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by split_ifs <;>
Mathlib.Logic.Lemmas.34_0.END1WfxnNs4h6Zj
theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c
Mathlib_Logic_Lemmas
case neg α : Sort u_1 p q r : Prop inst✝¹ : Decidable p inst✝ : Decidable q a✝ b✝ c✝ : α a : p → q → α b : p → ¬q → α c : ¬p → α h✝¹ : ¬p h✝ : ¬q ⊢ c h✝¹ = c h✝¹
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;> rfl #align dite_dite_distrib_left dite_dite_distrib_left theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by split_ifs <;>
rfl
theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by split_ifs <;>
Mathlib.Logic.Lemmas.34_0.END1WfxnNs4h6Zj
theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c
Mathlib_Logic_Lemmas
α : Sort u_1 p q r : Prop inst✝¹ : Decidable p inst✝ : Decidable q a b c : α f : Prop → Prop ⊢ f True ∧ f False → ∀ (p : Prop), f p
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;> rfl #align dite_dite_distrib_left dite_dite_distrib_left theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by split_ifs <;> rfl #align dite_dite_distrib_right dite_dite_distrib_right theorem ite_dite_distrib_left {a : α} {b : q → α} {c : ¬q → α} : ite p a (dite q b c) = dite q (fun hq ↦ ite p a <| b hq) fun hq ↦ ite p a <| c hq := dite_dite_distrib_left #align ite_dite_distrib_left ite_dite_distrib_left theorem ite_dite_distrib_right {a : q → α} {b : ¬q → α} {c : α} : ite p (dite q a b) c = dite q (fun hq ↦ ite p (a hq) c) fun hq ↦ ite p (b hq) c := dite_dite_distrib_right #align ite_dite_distrib_right ite_dite_distrib_right theorem dite_ite_distrib_left {a : p → α} {b : ¬p → α} {c : ¬p → α} : (dite p a fun hp ↦ ite q (b hp) (c hp)) = ite q (dite p a b) (dite p a c) := dite_dite_distrib_left #align dite_ite_distrib_left dite_ite_distrib_left theorem dite_ite_distrib_right {a : p → α} {b : p → α} {c : ¬p → α} : dite p (fun hp ↦ ite q (a hp) (b hp)) c = ite q (dite p a c) (dite p b c) := dite_dite_distrib_right #align dite_ite_distrib_right dite_ite_distrib_right theorem ite_ite_distrib_left : ite p a (ite q b c) = ite q (ite p a b) (ite p a c) := dite_dite_distrib_left #align ite_ite_distrib_left ite_ite_distrib_left theorem ite_ite_distrib_right : ite p (ite q a b) c = ite q (ite p a c) (ite p b c) := dite_dite_distrib_right #align ite_ite_distrib_right ite_ite_distrib_right lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False := ⟨fun h ↦ ⟨h _, h _⟩, by
rintro ⟨h₁, h₀⟩ p
lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False := ⟨fun h ↦ ⟨h _, h _⟩, by
Mathlib.Logic.Lemmas.68_0.END1WfxnNs4h6Zj
lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False
Mathlib_Logic_Lemmas
case intro α : Sort u_1 p✝ q r : Prop inst✝¹ : Decidable p✝ inst✝ : Decidable q a b c : α f : Prop → Prop h₁ : f True h₀ : f False p : Prop ⊢ f p
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;> rfl #align dite_dite_distrib_left dite_dite_distrib_left theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by split_ifs <;> rfl #align dite_dite_distrib_right dite_dite_distrib_right theorem ite_dite_distrib_left {a : α} {b : q → α} {c : ¬q → α} : ite p a (dite q b c) = dite q (fun hq ↦ ite p a <| b hq) fun hq ↦ ite p a <| c hq := dite_dite_distrib_left #align ite_dite_distrib_left ite_dite_distrib_left theorem ite_dite_distrib_right {a : q → α} {b : ¬q → α} {c : α} : ite p (dite q a b) c = dite q (fun hq ↦ ite p (a hq) c) fun hq ↦ ite p (b hq) c := dite_dite_distrib_right #align ite_dite_distrib_right ite_dite_distrib_right theorem dite_ite_distrib_left {a : p → α} {b : ¬p → α} {c : ¬p → α} : (dite p a fun hp ↦ ite q (b hp) (c hp)) = ite q (dite p a b) (dite p a c) := dite_dite_distrib_left #align dite_ite_distrib_left dite_ite_distrib_left theorem dite_ite_distrib_right {a : p → α} {b : p → α} {c : ¬p → α} : dite p (fun hp ↦ ite q (a hp) (b hp)) c = ite q (dite p a c) (dite p b c) := dite_dite_distrib_right #align dite_ite_distrib_right dite_ite_distrib_right theorem ite_ite_distrib_left : ite p a (ite q b c) = ite q (ite p a b) (ite p a c) := dite_dite_distrib_left #align ite_ite_distrib_left ite_ite_distrib_left theorem ite_ite_distrib_right : ite p (ite q a b) c = ite q (ite p a c) (ite p b c) := dite_dite_distrib_right #align ite_ite_distrib_right ite_ite_distrib_right lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False := ⟨fun h ↦ ⟨h _, h _⟩, by rintro ⟨h₁, h₀⟩ p;
by_cases hp : p
lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False := ⟨fun h ↦ ⟨h _, h _⟩, by rintro ⟨h₁, h₀⟩ p;
Mathlib.Logic.Lemmas.68_0.END1WfxnNs4h6Zj
lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False
Mathlib_Logic_Lemmas
case pos α : Sort u_1 p✝ q r : Prop inst✝¹ : Decidable p✝ inst✝ : Decidable q a b c : α f : Prop → Prop h₁ : f True h₀ : f False p : Prop hp : p ⊢ f p
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;> rfl #align dite_dite_distrib_left dite_dite_distrib_left theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by split_ifs <;> rfl #align dite_dite_distrib_right dite_dite_distrib_right theorem ite_dite_distrib_left {a : α} {b : q → α} {c : ¬q → α} : ite p a (dite q b c) = dite q (fun hq ↦ ite p a <| b hq) fun hq ↦ ite p a <| c hq := dite_dite_distrib_left #align ite_dite_distrib_left ite_dite_distrib_left theorem ite_dite_distrib_right {a : q → α} {b : ¬q → α} {c : α} : ite p (dite q a b) c = dite q (fun hq ↦ ite p (a hq) c) fun hq ↦ ite p (b hq) c := dite_dite_distrib_right #align ite_dite_distrib_right ite_dite_distrib_right theorem dite_ite_distrib_left {a : p → α} {b : ¬p → α} {c : ¬p → α} : (dite p a fun hp ↦ ite q (b hp) (c hp)) = ite q (dite p a b) (dite p a c) := dite_dite_distrib_left #align dite_ite_distrib_left dite_ite_distrib_left theorem dite_ite_distrib_right {a : p → α} {b : p → α} {c : ¬p → α} : dite p (fun hp ↦ ite q (a hp) (b hp)) c = ite q (dite p a c) (dite p b c) := dite_dite_distrib_right #align dite_ite_distrib_right dite_ite_distrib_right theorem ite_ite_distrib_left : ite p a (ite q b c) = ite q (ite p a b) (ite p a c) := dite_dite_distrib_left #align ite_ite_distrib_left ite_ite_distrib_left theorem ite_ite_distrib_right : ite p (ite q a b) c = ite q (ite p a c) (ite p b c) := dite_dite_distrib_right #align ite_ite_distrib_right ite_ite_distrib_right lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False := ⟨fun h ↦ ⟨h _, h _⟩, by rintro ⟨h₁, h₀⟩ p; by_cases hp : p <;>
simp only [hp]
lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False := ⟨fun h ↦ ⟨h _, h _⟩, by rintro ⟨h₁, h₀⟩ p; by_cases hp : p <;>
Mathlib.Logic.Lemmas.68_0.END1WfxnNs4h6Zj
lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False
Mathlib_Logic_Lemmas
case neg α : Sort u_1 p✝ q r : Prop inst✝¹ : Decidable p✝ inst✝ : Decidable q a b c : α f : Prop → Prop h₁ : f True h₀ : f False p : Prop hp : ¬p ⊢ f p
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;> rfl #align dite_dite_distrib_left dite_dite_distrib_left theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by split_ifs <;> rfl #align dite_dite_distrib_right dite_dite_distrib_right theorem ite_dite_distrib_left {a : α} {b : q → α} {c : ¬q → α} : ite p a (dite q b c) = dite q (fun hq ↦ ite p a <| b hq) fun hq ↦ ite p a <| c hq := dite_dite_distrib_left #align ite_dite_distrib_left ite_dite_distrib_left theorem ite_dite_distrib_right {a : q → α} {b : ¬q → α} {c : α} : ite p (dite q a b) c = dite q (fun hq ↦ ite p (a hq) c) fun hq ↦ ite p (b hq) c := dite_dite_distrib_right #align ite_dite_distrib_right ite_dite_distrib_right theorem dite_ite_distrib_left {a : p → α} {b : ¬p → α} {c : ¬p → α} : (dite p a fun hp ↦ ite q (b hp) (c hp)) = ite q (dite p a b) (dite p a c) := dite_dite_distrib_left #align dite_ite_distrib_left dite_ite_distrib_left theorem dite_ite_distrib_right {a : p → α} {b : p → α} {c : ¬p → α} : dite p (fun hp ↦ ite q (a hp) (b hp)) c = ite q (dite p a c) (dite p b c) := dite_dite_distrib_right #align dite_ite_distrib_right dite_ite_distrib_right theorem ite_ite_distrib_left : ite p a (ite q b c) = ite q (ite p a b) (ite p a c) := dite_dite_distrib_left #align ite_ite_distrib_left ite_ite_distrib_left theorem ite_ite_distrib_right : ite p (ite q a b) c = ite q (ite p a c) (ite p b c) := dite_dite_distrib_right #align ite_ite_distrib_right ite_ite_distrib_right lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False := ⟨fun h ↦ ⟨h _, h _⟩, by rintro ⟨h₁, h₀⟩ p; by_cases hp : p <;>
simp only [hp]
lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False := ⟨fun h ↦ ⟨h _, h _⟩, by rintro ⟨h₁, h₀⟩ p; by_cases hp : p <;>
Mathlib.Logic.Lemmas.68_0.END1WfxnNs4h6Zj
lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False
Mathlib_Logic_Lemmas
case pos α : Sort u_1 p✝ q r : Prop inst✝¹ : Decidable p✝ inst✝ : Decidable q a b c : α f : Prop → Prop h₁ : f True h₀ : f False p : Prop hp : p ⊢ f True
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;> rfl #align dite_dite_distrib_left dite_dite_distrib_left theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by split_ifs <;> rfl #align dite_dite_distrib_right dite_dite_distrib_right theorem ite_dite_distrib_left {a : α} {b : q → α} {c : ¬q → α} : ite p a (dite q b c) = dite q (fun hq ↦ ite p a <| b hq) fun hq ↦ ite p a <| c hq := dite_dite_distrib_left #align ite_dite_distrib_left ite_dite_distrib_left theorem ite_dite_distrib_right {a : q → α} {b : ¬q → α} {c : α} : ite p (dite q a b) c = dite q (fun hq ↦ ite p (a hq) c) fun hq ↦ ite p (b hq) c := dite_dite_distrib_right #align ite_dite_distrib_right ite_dite_distrib_right theorem dite_ite_distrib_left {a : p → α} {b : ¬p → α} {c : ¬p → α} : (dite p a fun hp ↦ ite q (b hp) (c hp)) = ite q (dite p a b) (dite p a c) := dite_dite_distrib_left #align dite_ite_distrib_left dite_ite_distrib_left theorem dite_ite_distrib_right {a : p → α} {b : p → α} {c : ¬p → α} : dite p (fun hp ↦ ite q (a hp) (b hp)) c = ite q (dite p a c) (dite p b c) := dite_dite_distrib_right #align dite_ite_distrib_right dite_ite_distrib_right theorem ite_ite_distrib_left : ite p a (ite q b c) = ite q (ite p a b) (ite p a c) := dite_dite_distrib_left #align ite_ite_distrib_left ite_ite_distrib_left theorem ite_ite_distrib_right : ite p (ite q a b) c = ite q (ite p a c) (ite p b c) := dite_dite_distrib_right #align ite_ite_distrib_right ite_ite_distrib_right lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False := ⟨fun h ↦ ⟨h _, h _⟩, by rintro ⟨h₁, h₀⟩ p; by_cases hp : p <;> simp only [hp] <;>
assumption
lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False := ⟨fun h ↦ ⟨h _, h _⟩, by rintro ⟨h₁, h₀⟩ p; by_cases hp : p <;> simp only [hp] <;>
Mathlib.Logic.Lemmas.68_0.END1WfxnNs4h6Zj
lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False
Mathlib_Logic_Lemmas
case neg α : Sort u_1 p✝ q r : Prop inst✝¹ : Decidable p✝ inst✝ : Decidable q a b c : α f : Prop → Prop h₁ : f True h₀ : f False p : Prop hp : ¬p ⊢ f False
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;> rfl #align dite_dite_distrib_left dite_dite_distrib_left theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by split_ifs <;> rfl #align dite_dite_distrib_right dite_dite_distrib_right theorem ite_dite_distrib_left {a : α} {b : q → α} {c : ¬q → α} : ite p a (dite q b c) = dite q (fun hq ↦ ite p a <| b hq) fun hq ↦ ite p a <| c hq := dite_dite_distrib_left #align ite_dite_distrib_left ite_dite_distrib_left theorem ite_dite_distrib_right {a : q → α} {b : ¬q → α} {c : α} : ite p (dite q a b) c = dite q (fun hq ↦ ite p (a hq) c) fun hq ↦ ite p (b hq) c := dite_dite_distrib_right #align ite_dite_distrib_right ite_dite_distrib_right theorem dite_ite_distrib_left {a : p → α} {b : ¬p → α} {c : ¬p → α} : (dite p a fun hp ↦ ite q (b hp) (c hp)) = ite q (dite p a b) (dite p a c) := dite_dite_distrib_left #align dite_ite_distrib_left dite_ite_distrib_left theorem dite_ite_distrib_right {a : p → α} {b : p → α} {c : ¬p → α} : dite p (fun hp ↦ ite q (a hp) (b hp)) c = ite q (dite p a c) (dite p b c) := dite_dite_distrib_right #align dite_ite_distrib_right dite_ite_distrib_right theorem ite_ite_distrib_left : ite p a (ite q b c) = ite q (ite p a b) (ite p a c) := dite_dite_distrib_left #align ite_ite_distrib_left ite_ite_distrib_left theorem ite_ite_distrib_right : ite p (ite q a b) c = ite q (ite p a c) (ite p b c) := dite_dite_distrib_right #align ite_ite_distrib_right ite_ite_distrib_right lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False := ⟨fun h ↦ ⟨h _, h _⟩, by rintro ⟨h₁, h₀⟩ p; by_cases hp : p <;> simp only [hp] <;>
assumption
lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False := ⟨fun h ↦ ⟨h _, h _⟩, by rintro ⟨h₁, h₀⟩ p; by_cases hp : p <;> simp only [hp] <;>
Mathlib.Logic.Lemmas.68_0.END1WfxnNs4h6Zj
lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False
Mathlib_Logic_Lemmas
α : Sort u_1 p✝ q r : Prop inst✝¹ : Decidable p✝ inst✝ : Decidable q a b c : α f : Prop → Prop x✝ : ∃ p, f p p : Prop h : f p ⊢ f True ∨ f False
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;> rfl #align dite_dite_distrib_left dite_dite_distrib_left theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by split_ifs <;> rfl #align dite_dite_distrib_right dite_dite_distrib_right theorem ite_dite_distrib_left {a : α} {b : q → α} {c : ¬q → α} : ite p a (dite q b c) = dite q (fun hq ↦ ite p a <| b hq) fun hq ↦ ite p a <| c hq := dite_dite_distrib_left #align ite_dite_distrib_left ite_dite_distrib_left theorem ite_dite_distrib_right {a : q → α} {b : ¬q → α} {c : α} : ite p (dite q a b) c = dite q (fun hq ↦ ite p (a hq) c) fun hq ↦ ite p (b hq) c := dite_dite_distrib_right #align ite_dite_distrib_right ite_dite_distrib_right theorem dite_ite_distrib_left {a : p → α} {b : ¬p → α} {c : ¬p → α} : (dite p a fun hp ↦ ite q (b hp) (c hp)) = ite q (dite p a b) (dite p a c) := dite_dite_distrib_left #align dite_ite_distrib_left dite_ite_distrib_left theorem dite_ite_distrib_right {a : p → α} {b : p → α} {c : ¬p → α} : dite p (fun hp ↦ ite q (a hp) (b hp)) c = ite q (dite p a c) (dite p b c) := dite_dite_distrib_right #align dite_ite_distrib_right dite_ite_distrib_right theorem ite_ite_distrib_left : ite p a (ite q b c) = ite q (ite p a b) (ite p a c) := dite_dite_distrib_left #align ite_ite_distrib_left ite_ite_distrib_left theorem ite_ite_distrib_right : ite p (ite q a b) c = ite q (ite p a c) (ite p b c) := dite_dite_distrib_right #align ite_ite_distrib_right ite_ite_distrib_right lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False := ⟨fun h ↦ ⟨h _, h _⟩, by rintro ⟨h₁, h₀⟩ p; by_cases hp : p <;> simp only [hp] <;> assumption⟩ #align Prop.forall Prop.forall lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False := ⟨fun ⟨p, h⟩ ↦ by
refine' (em p).imp _ _
lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False := ⟨fun ⟨p, h⟩ ↦ by
Mathlib.Logic.Lemmas.72_0.END1WfxnNs4h6Zj
lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False
Mathlib_Logic_Lemmas
case refine'_1 α : Sort u_1 p✝ q r : Prop inst✝¹ : Decidable p✝ inst✝ : Decidable q a b c : α f : Prop → Prop x✝ : ∃ p, f p p : Prop h : f p ⊢ p → f True
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;> rfl #align dite_dite_distrib_left dite_dite_distrib_left theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by split_ifs <;> rfl #align dite_dite_distrib_right dite_dite_distrib_right theorem ite_dite_distrib_left {a : α} {b : q → α} {c : ¬q → α} : ite p a (dite q b c) = dite q (fun hq ↦ ite p a <| b hq) fun hq ↦ ite p a <| c hq := dite_dite_distrib_left #align ite_dite_distrib_left ite_dite_distrib_left theorem ite_dite_distrib_right {a : q → α} {b : ¬q → α} {c : α} : ite p (dite q a b) c = dite q (fun hq ↦ ite p (a hq) c) fun hq ↦ ite p (b hq) c := dite_dite_distrib_right #align ite_dite_distrib_right ite_dite_distrib_right theorem dite_ite_distrib_left {a : p → α} {b : ¬p → α} {c : ¬p → α} : (dite p a fun hp ↦ ite q (b hp) (c hp)) = ite q (dite p a b) (dite p a c) := dite_dite_distrib_left #align dite_ite_distrib_left dite_ite_distrib_left theorem dite_ite_distrib_right {a : p → α} {b : p → α} {c : ¬p → α} : dite p (fun hp ↦ ite q (a hp) (b hp)) c = ite q (dite p a c) (dite p b c) := dite_dite_distrib_right #align dite_ite_distrib_right dite_ite_distrib_right theorem ite_ite_distrib_left : ite p a (ite q b c) = ite q (ite p a b) (ite p a c) := dite_dite_distrib_left #align ite_ite_distrib_left ite_ite_distrib_left theorem ite_ite_distrib_right : ite p (ite q a b) c = ite q (ite p a c) (ite p b c) := dite_dite_distrib_right #align ite_ite_distrib_right ite_ite_distrib_right lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False := ⟨fun h ↦ ⟨h _, h _⟩, by rintro ⟨h₁, h₀⟩ p; by_cases hp : p <;> simp only [hp] <;> assumption⟩ #align Prop.forall Prop.forall lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False := ⟨fun ⟨p, h⟩ ↦ by refine' (em p).imp _ _ <;>
intro H
lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False := ⟨fun ⟨p, h⟩ ↦ by refine' (em p).imp _ _ <;>
Mathlib.Logic.Lemmas.72_0.END1WfxnNs4h6Zj
lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False
Mathlib_Logic_Lemmas
case refine'_2 α : Sort u_1 p✝ q r : Prop inst✝¹ : Decidable p✝ inst✝ : Decidable q a b c : α f : Prop → Prop x✝ : ∃ p, f p p : Prop h : f p ⊢ ¬p → f False
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;> rfl #align dite_dite_distrib_left dite_dite_distrib_left theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by split_ifs <;> rfl #align dite_dite_distrib_right dite_dite_distrib_right theorem ite_dite_distrib_left {a : α} {b : q → α} {c : ¬q → α} : ite p a (dite q b c) = dite q (fun hq ↦ ite p a <| b hq) fun hq ↦ ite p a <| c hq := dite_dite_distrib_left #align ite_dite_distrib_left ite_dite_distrib_left theorem ite_dite_distrib_right {a : q → α} {b : ¬q → α} {c : α} : ite p (dite q a b) c = dite q (fun hq ↦ ite p (a hq) c) fun hq ↦ ite p (b hq) c := dite_dite_distrib_right #align ite_dite_distrib_right ite_dite_distrib_right theorem dite_ite_distrib_left {a : p → α} {b : ¬p → α} {c : ¬p → α} : (dite p a fun hp ↦ ite q (b hp) (c hp)) = ite q (dite p a b) (dite p a c) := dite_dite_distrib_left #align dite_ite_distrib_left dite_ite_distrib_left theorem dite_ite_distrib_right {a : p → α} {b : p → α} {c : ¬p → α} : dite p (fun hp ↦ ite q (a hp) (b hp)) c = ite q (dite p a c) (dite p b c) := dite_dite_distrib_right #align dite_ite_distrib_right dite_ite_distrib_right theorem ite_ite_distrib_left : ite p a (ite q b c) = ite q (ite p a b) (ite p a c) := dite_dite_distrib_left #align ite_ite_distrib_left ite_ite_distrib_left theorem ite_ite_distrib_right : ite p (ite q a b) c = ite q (ite p a c) (ite p b c) := dite_dite_distrib_right #align ite_ite_distrib_right ite_ite_distrib_right lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False := ⟨fun h ↦ ⟨h _, h _⟩, by rintro ⟨h₁, h₀⟩ p; by_cases hp : p <;> simp only [hp] <;> assumption⟩ #align Prop.forall Prop.forall lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False := ⟨fun ⟨p, h⟩ ↦ by refine' (em p).imp _ _ <;>
intro H
lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False := ⟨fun ⟨p, h⟩ ↦ by refine' (em p).imp _ _ <;>
Mathlib.Logic.Lemmas.72_0.END1WfxnNs4h6Zj
lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False
Mathlib_Logic_Lemmas
case refine'_1 α : Sort u_1 p✝ q r : Prop inst✝¹ : Decidable p✝ inst✝ : Decidable q a b c : α f : Prop → Prop x✝ : ∃ p, f p p : Prop h : f p H : p ⊢ f True
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;> rfl #align dite_dite_distrib_left dite_dite_distrib_left theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by split_ifs <;> rfl #align dite_dite_distrib_right dite_dite_distrib_right theorem ite_dite_distrib_left {a : α} {b : q → α} {c : ¬q → α} : ite p a (dite q b c) = dite q (fun hq ↦ ite p a <| b hq) fun hq ↦ ite p a <| c hq := dite_dite_distrib_left #align ite_dite_distrib_left ite_dite_distrib_left theorem ite_dite_distrib_right {a : q → α} {b : ¬q → α} {c : α} : ite p (dite q a b) c = dite q (fun hq ↦ ite p (a hq) c) fun hq ↦ ite p (b hq) c := dite_dite_distrib_right #align ite_dite_distrib_right ite_dite_distrib_right theorem dite_ite_distrib_left {a : p → α} {b : ¬p → α} {c : ¬p → α} : (dite p a fun hp ↦ ite q (b hp) (c hp)) = ite q (dite p a b) (dite p a c) := dite_dite_distrib_left #align dite_ite_distrib_left dite_ite_distrib_left theorem dite_ite_distrib_right {a : p → α} {b : p → α} {c : ¬p → α} : dite p (fun hp ↦ ite q (a hp) (b hp)) c = ite q (dite p a c) (dite p b c) := dite_dite_distrib_right #align dite_ite_distrib_right dite_ite_distrib_right theorem ite_ite_distrib_left : ite p a (ite q b c) = ite q (ite p a b) (ite p a c) := dite_dite_distrib_left #align ite_ite_distrib_left ite_ite_distrib_left theorem ite_ite_distrib_right : ite p (ite q a b) c = ite q (ite p a c) (ite p b c) := dite_dite_distrib_right #align ite_ite_distrib_right ite_ite_distrib_right lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False := ⟨fun h ↦ ⟨h _, h _⟩, by rintro ⟨h₁, h₀⟩ p; by_cases hp : p <;> simp only [hp] <;> assumption⟩ #align Prop.forall Prop.forall lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False := ⟨fun ⟨p, h⟩ ↦ by refine' (em p).imp _ _ <;> intro H <;>
convert h
lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False := ⟨fun ⟨p, h⟩ ↦ by refine' (em p).imp _ _ <;> intro H <;>
Mathlib.Logic.Lemmas.72_0.END1WfxnNs4h6Zj
lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False
Mathlib_Logic_Lemmas
case refine'_2 α : Sort u_1 p✝ q r : Prop inst✝¹ : Decidable p✝ inst✝ : Decidable q a b c : α f : Prop → Prop x✝ : ∃ p, f p p : Prop h : f p H : ¬p ⊢ f False
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;> rfl #align dite_dite_distrib_left dite_dite_distrib_left theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by split_ifs <;> rfl #align dite_dite_distrib_right dite_dite_distrib_right theorem ite_dite_distrib_left {a : α} {b : q → α} {c : ¬q → α} : ite p a (dite q b c) = dite q (fun hq ↦ ite p a <| b hq) fun hq ↦ ite p a <| c hq := dite_dite_distrib_left #align ite_dite_distrib_left ite_dite_distrib_left theorem ite_dite_distrib_right {a : q → α} {b : ¬q → α} {c : α} : ite p (dite q a b) c = dite q (fun hq ↦ ite p (a hq) c) fun hq ↦ ite p (b hq) c := dite_dite_distrib_right #align ite_dite_distrib_right ite_dite_distrib_right theorem dite_ite_distrib_left {a : p → α} {b : ¬p → α} {c : ¬p → α} : (dite p a fun hp ↦ ite q (b hp) (c hp)) = ite q (dite p a b) (dite p a c) := dite_dite_distrib_left #align dite_ite_distrib_left dite_ite_distrib_left theorem dite_ite_distrib_right {a : p → α} {b : p → α} {c : ¬p → α} : dite p (fun hp ↦ ite q (a hp) (b hp)) c = ite q (dite p a c) (dite p b c) := dite_dite_distrib_right #align dite_ite_distrib_right dite_ite_distrib_right theorem ite_ite_distrib_left : ite p a (ite q b c) = ite q (ite p a b) (ite p a c) := dite_dite_distrib_left #align ite_ite_distrib_left ite_ite_distrib_left theorem ite_ite_distrib_right : ite p (ite q a b) c = ite q (ite p a c) (ite p b c) := dite_dite_distrib_right #align ite_ite_distrib_right ite_ite_distrib_right lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False := ⟨fun h ↦ ⟨h _, h _⟩, by rintro ⟨h₁, h₀⟩ p; by_cases hp : p <;> simp only [hp] <;> assumption⟩ #align Prop.forall Prop.forall lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False := ⟨fun ⟨p, h⟩ ↦ by refine' (em p).imp _ _ <;> intro H <;>
convert h
lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False := ⟨fun ⟨p, h⟩ ↦ by refine' (em p).imp _ _ <;> intro H <;>
Mathlib.Logic.Lemmas.72_0.END1WfxnNs4h6Zj
lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False
Mathlib_Logic_Lemmas
case h.e'_1.a α : Sort u_1 p✝ q r : Prop inst✝¹ : Decidable p✝ inst✝ : Decidable q a b c : α f : Prop → Prop x✝ : ∃ p, f p p : Prop h : f p H : p ⊢ True ↔ p
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;> rfl #align dite_dite_distrib_left dite_dite_distrib_left theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by split_ifs <;> rfl #align dite_dite_distrib_right dite_dite_distrib_right theorem ite_dite_distrib_left {a : α} {b : q → α} {c : ¬q → α} : ite p a (dite q b c) = dite q (fun hq ↦ ite p a <| b hq) fun hq ↦ ite p a <| c hq := dite_dite_distrib_left #align ite_dite_distrib_left ite_dite_distrib_left theorem ite_dite_distrib_right {a : q → α} {b : ¬q → α} {c : α} : ite p (dite q a b) c = dite q (fun hq ↦ ite p (a hq) c) fun hq ↦ ite p (b hq) c := dite_dite_distrib_right #align ite_dite_distrib_right ite_dite_distrib_right theorem dite_ite_distrib_left {a : p → α} {b : ¬p → α} {c : ¬p → α} : (dite p a fun hp ↦ ite q (b hp) (c hp)) = ite q (dite p a b) (dite p a c) := dite_dite_distrib_left #align dite_ite_distrib_left dite_ite_distrib_left theorem dite_ite_distrib_right {a : p → α} {b : p → α} {c : ¬p → α} : dite p (fun hp ↦ ite q (a hp) (b hp)) c = ite q (dite p a c) (dite p b c) := dite_dite_distrib_right #align dite_ite_distrib_right dite_ite_distrib_right theorem ite_ite_distrib_left : ite p a (ite q b c) = ite q (ite p a b) (ite p a c) := dite_dite_distrib_left #align ite_ite_distrib_left ite_ite_distrib_left theorem ite_ite_distrib_right : ite p (ite q a b) c = ite q (ite p a c) (ite p b c) := dite_dite_distrib_right #align ite_ite_distrib_right ite_ite_distrib_right lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False := ⟨fun h ↦ ⟨h _, h _⟩, by rintro ⟨h₁, h₀⟩ p; by_cases hp : p <;> simp only [hp] <;> assumption⟩ #align Prop.forall Prop.forall lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False := ⟨fun ⟨p, h⟩ ↦ by refine' (em p).imp _ _ <;> intro H <;> convert h <;>
simp [H]
lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False := ⟨fun ⟨p, h⟩ ↦ by refine' (em p).imp _ _ <;> intro H <;> convert h <;>
Mathlib.Logic.Lemmas.72_0.END1WfxnNs4h6Zj
lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False
Mathlib_Logic_Lemmas
case h.e'_1.a α : Sort u_1 p✝ q r : Prop inst✝¹ : Decidable p✝ inst✝ : Decidable q a b c : α f : Prop → Prop x✝ : ∃ p, f p p : Prop h : f p H : ¬p ⊢ False ↔ p
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;> rfl #align dite_dite_distrib_left dite_dite_distrib_left theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by split_ifs <;> rfl #align dite_dite_distrib_right dite_dite_distrib_right theorem ite_dite_distrib_left {a : α} {b : q → α} {c : ¬q → α} : ite p a (dite q b c) = dite q (fun hq ↦ ite p a <| b hq) fun hq ↦ ite p a <| c hq := dite_dite_distrib_left #align ite_dite_distrib_left ite_dite_distrib_left theorem ite_dite_distrib_right {a : q → α} {b : ¬q → α} {c : α} : ite p (dite q a b) c = dite q (fun hq ↦ ite p (a hq) c) fun hq ↦ ite p (b hq) c := dite_dite_distrib_right #align ite_dite_distrib_right ite_dite_distrib_right theorem dite_ite_distrib_left {a : p → α} {b : ¬p → α} {c : ¬p → α} : (dite p a fun hp ↦ ite q (b hp) (c hp)) = ite q (dite p a b) (dite p a c) := dite_dite_distrib_left #align dite_ite_distrib_left dite_ite_distrib_left theorem dite_ite_distrib_right {a : p → α} {b : p → α} {c : ¬p → α} : dite p (fun hp ↦ ite q (a hp) (b hp)) c = ite q (dite p a c) (dite p b c) := dite_dite_distrib_right #align dite_ite_distrib_right dite_ite_distrib_right theorem ite_ite_distrib_left : ite p a (ite q b c) = ite q (ite p a b) (ite p a c) := dite_dite_distrib_left #align ite_ite_distrib_left ite_ite_distrib_left theorem ite_ite_distrib_right : ite p (ite q a b) c = ite q (ite p a c) (ite p b c) := dite_dite_distrib_right #align ite_ite_distrib_right ite_ite_distrib_right lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False := ⟨fun h ↦ ⟨h _, h _⟩, by rintro ⟨h₁, h₀⟩ p; by_cases hp : p <;> simp only [hp] <;> assumption⟩ #align Prop.forall Prop.forall lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False := ⟨fun ⟨p, h⟩ ↦ by refine' (em p).imp _ _ <;> intro H <;> convert h <;>
simp [H]
lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False := ⟨fun ⟨p, h⟩ ↦ by refine' (em p).imp _ _ <;> intro H <;> convert h <;>
Mathlib.Logic.Lemmas.72_0.END1WfxnNs4h6Zj
lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False
Mathlib_Logic_Lemmas
α : Sort u_1 p q r : Prop inst✝¹ : Decidable p inst✝ : Decidable q a b c : α f : Prop → Prop ⊢ f True ∨ f False → ∃ p, f p
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;> rfl #align dite_dite_distrib_left dite_dite_distrib_left theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by split_ifs <;> rfl #align dite_dite_distrib_right dite_dite_distrib_right theorem ite_dite_distrib_left {a : α} {b : q → α} {c : ¬q → α} : ite p a (dite q b c) = dite q (fun hq ↦ ite p a <| b hq) fun hq ↦ ite p a <| c hq := dite_dite_distrib_left #align ite_dite_distrib_left ite_dite_distrib_left theorem ite_dite_distrib_right {a : q → α} {b : ¬q → α} {c : α} : ite p (dite q a b) c = dite q (fun hq ↦ ite p (a hq) c) fun hq ↦ ite p (b hq) c := dite_dite_distrib_right #align ite_dite_distrib_right ite_dite_distrib_right theorem dite_ite_distrib_left {a : p → α} {b : ¬p → α} {c : ¬p → α} : (dite p a fun hp ↦ ite q (b hp) (c hp)) = ite q (dite p a b) (dite p a c) := dite_dite_distrib_left #align dite_ite_distrib_left dite_ite_distrib_left theorem dite_ite_distrib_right {a : p → α} {b : p → α} {c : ¬p → α} : dite p (fun hp ↦ ite q (a hp) (b hp)) c = ite q (dite p a c) (dite p b c) := dite_dite_distrib_right #align dite_ite_distrib_right dite_ite_distrib_right theorem ite_ite_distrib_left : ite p a (ite q b c) = ite q (ite p a b) (ite p a c) := dite_dite_distrib_left #align ite_ite_distrib_left ite_ite_distrib_left theorem ite_ite_distrib_right : ite p (ite q a b) c = ite q (ite p a c) (ite p b c) := dite_dite_distrib_right #align ite_ite_distrib_right ite_ite_distrib_right lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False := ⟨fun h ↦ ⟨h _, h _⟩, by rintro ⟨h₁, h₀⟩ p; by_cases hp : p <;> simp only [hp] <;> assumption⟩ #align Prop.forall Prop.forall lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False := ⟨fun ⟨p, h⟩ ↦ by refine' (em p).imp _ _ <;> intro H <;> convert h <;> simp [H], by
rintro (h | h)
lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False := ⟨fun ⟨p, h⟩ ↦ by refine' (em p).imp _ _ <;> intro H <;> convert h <;> simp [H], by
Mathlib.Logic.Lemmas.72_0.END1WfxnNs4h6Zj
lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False
Mathlib_Logic_Lemmas
case inl α : Sort u_1 p q r : Prop inst✝¹ : Decidable p inst✝ : Decidable q a b c : α f : Prop → Prop h : f True ⊢ ∃ p, f p
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;> rfl #align dite_dite_distrib_left dite_dite_distrib_left theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by split_ifs <;> rfl #align dite_dite_distrib_right dite_dite_distrib_right theorem ite_dite_distrib_left {a : α} {b : q → α} {c : ¬q → α} : ite p a (dite q b c) = dite q (fun hq ↦ ite p a <| b hq) fun hq ↦ ite p a <| c hq := dite_dite_distrib_left #align ite_dite_distrib_left ite_dite_distrib_left theorem ite_dite_distrib_right {a : q → α} {b : ¬q → α} {c : α} : ite p (dite q a b) c = dite q (fun hq ↦ ite p (a hq) c) fun hq ↦ ite p (b hq) c := dite_dite_distrib_right #align ite_dite_distrib_right ite_dite_distrib_right theorem dite_ite_distrib_left {a : p → α} {b : ¬p → α} {c : ¬p → α} : (dite p a fun hp ↦ ite q (b hp) (c hp)) = ite q (dite p a b) (dite p a c) := dite_dite_distrib_left #align dite_ite_distrib_left dite_ite_distrib_left theorem dite_ite_distrib_right {a : p → α} {b : p → α} {c : ¬p → α} : dite p (fun hp ↦ ite q (a hp) (b hp)) c = ite q (dite p a c) (dite p b c) := dite_dite_distrib_right #align dite_ite_distrib_right dite_ite_distrib_right theorem ite_ite_distrib_left : ite p a (ite q b c) = ite q (ite p a b) (ite p a c) := dite_dite_distrib_left #align ite_ite_distrib_left ite_ite_distrib_left theorem ite_ite_distrib_right : ite p (ite q a b) c = ite q (ite p a c) (ite p b c) := dite_dite_distrib_right #align ite_ite_distrib_right ite_ite_distrib_right lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False := ⟨fun h ↦ ⟨h _, h _⟩, by rintro ⟨h₁, h₀⟩ p; by_cases hp : p <;> simp only [hp] <;> assumption⟩ #align Prop.forall Prop.forall lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False := ⟨fun ⟨p, h⟩ ↦ by refine' (em p).imp _ _ <;> intro H <;> convert h <;> simp [H], by rintro (h | h) <;>
exact ⟨_, h⟩
lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False := ⟨fun ⟨p, h⟩ ↦ by refine' (em p).imp _ _ <;> intro H <;> convert h <;> simp [H], by rintro (h | h) <;>
Mathlib.Logic.Lemmas.72_0.END1WfxnNs4h6Zj
lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False
Mathlib_Logic_Lemmas
case inr α : Sort u_1 p q r : Prop inst✝¹ : Decidable p inst✝ : Decidable q a b c : α f : Prop → Prop h : f False ⊢ ∃ p, f p
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Logic.Basic import Mathlib.Tactic.Convert import Mathlib.Tactic.SplitIfs #align_import logic.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c" /-! # More basic logic properties A few more logic lemmas. These are in their own file, rather than `Logic.Basic`, because it is convenient to be able to use the `split_ifs` tactic. ## Implementation notes We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this would result in less delta-reduced statements. -/ protected alias ⟨HEq.eq, Eq.heq⟩ := heq_iff_eq #align heq.eq HEq.eq #align eq.heq Eq.heq variable {α : Sort*} {p q r : Prop} [Decidable p] [Decidable q] {a b c : α} theorem dite_dite_distrib_left {a : p → α} {b : ¬p → q → α} {c : ¬p → ¬q → α} : (dite p a fun hp ↦ dite q (b hp) (c hp)) = dite q (fun hq ↦ (dite p a) fun hp ↦ b hp hq) fun hq ↦ (dite p a) fun hp ↦ c hp hq := by split_ifs <;> rfl #align dite_dite_distrib_left dite_dite_distrib_left theorem dite_dite_distrib_right {a : p → q → α} {b : p → ¬q → α} {c : ¬p → α} : dite p (fun hp ↦ dite q (a hp) (b hp)) c = dite q (fun hq ↦ dite p (fun hp ↦ a hp hq) c) fun hq ↦ dite p (fun hp ↦ b hp hq) c := by split_ifs <;> rfl #align dite_dite_distrib_right dite_dite_distrib_right theorem ite_dite_distrib_left {a : α} {b : q → α} {c : ¬q → α} : ite p a (dite q b c) = dite q (fun hq ↦ ite p a <| b hq) fun hq ↦ ite p a <| c hq := dite_dite_distrib_left #align ite_dite_distrib_left ite_dite_distrib_left theorem ite_dite_distrib_right {a : q → α} {b : ¬q → α} {c : α} : ite p (dite q a b) c = dite q (fun hq ↦ ite p (a hq) c) fun hq ↦ ite p (b hq) c := dite_dite_distrib_right #align ite_dite_distrib_right ite_dite_distrib_right theorem dite_ite_distrib_left {a : p → α} {b : ¬p → α} {c : ¬p → α} : (dite p a fun hp ↦ ite q (b hp) (c hp)) = ite q (dite p a b) (dite p a c) := dite_dite_distrib_left #align dite_ite_distrib_left dite_ite_distrib_left theorem dite_ite_distrib_right {a : p → α} {b : p → α} {c : ¬p → α} : dite p (fun hp ↦ ite q (a hp) (b hp)) c = ite q (dite p a c) (dite p b c) := dite_dite_distrib_right #align dite_ite_distrib_right dite_ite_distrib_right theorem ite_ite_distrib_left : ite p a (ite q b c) = ite q (ite p a b) (ite p a c) := dite_dite_distrib_left #align ite_ite_distrib_left ite_ite_distrib_left theorem ite_ite_distrib_right : ite p (ite q a b) c = ite q (ite p a c) (ite p b c) := dite_dite_distrib_right #align ite_ite_distrib_right ite_ite_distrib_right lemma Prop.forall {f : Prop → Prop} : (∀ p, f p) ↔ f True ∧ f False := ⟨fun h ↦ ⟨h _, h _⟩, by rintro ⟨h₁, h₀⟩ p; by_cases hp : p <;> simp only [hp] <;> assumption⟩ #align Prop.forall Prop.forall lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False := ⟨fun ⟨p, h⟩ ↦ by refine' (em p).imp _ _ <;> intro H <;> convert h <;> simp [H], by rintro (h | h) <;>
exact ⟨_, h⟩
lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False := ⟨fun ⟨p, h⟩ ↦ by refine' (em p).imp _ _ <;> intro H <;> convert h <;> simp [H], by rintro (h | h) <;>
Mathlib.Logic.Lemmas.72_0.END1WfxnNs4h6Zj
lemma Prop.exists {f : Prop → Prop} : (∃ p, f p) ↔ f True ∨ f False
Mathlib_Logic_Lemmas
C : Type u_1 inst✝¹ : Category.{?u.28, u_1} C inst✝ : Abelian C ⊢ Abelian Cᵒᵖ
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Abelian.Basic import Mathlib.CategoryTheory.Preadditive.Opposite import Mathlib.CategoryTheory.Limits.Opposites #align_import category_theory.abelian.opposite from "leanprover-community/mathlib"@"a5ff45a1c92c278b03b52459a620cfd9c49ebc80" /-! # The opposite of an abelian category is abelian. -/ noncomputable section namespace CategoryTheory open CategoryTheory.Limits variable (C : Type*) [Category C] [Abelian C] -- porting note: these local instances do not seem to be necessary --attribute [local instance] -- hasFiniteLimits_of_hasEqualizers_and_finite_products -- hasFiniteColimits_of_hasCoequalizers_and_finite_coproducts -- Abelian.hasFiniteBiproducts instance : Abelian Cᵒᵖ := by -- porting note: priorities of `Abelian.has_kernels` and `Abelian.has_cokernels` have -- been set to 90 in `Abelian.Basic` in order to prevent a timeout here
exact { normalMonoOfMono := fun f => normalMonoOfNormalEpiUnop _ (normalEpiOfEpi f.unop) normalEpiOfEpi := fun f => normalEpiOfNormalMonoUnop _ (normalMonoOfMono f.unop) }
instance : Abelian Cᵒᵖ := by -- porting note: priorities of `Abelian.has_kernels` and `Abelian.has_cokernels` have -- been set to 90 in `Abelian.Basic` in order to prevent a timeout here
Mathlib.CategoryTheory.Abelian.Opposite.31_0.3nBRs3fSYrCoEsT
instance : Abelian Cᵒᵖ
Mathlib_CategoryTheory_Abelian_Opposite
C : Type u_1 inst✝¹ : Category.{?u.2298, u_1} C inst✝ : Abelian C X Y : C f : X ⟶ Y A B : Cᵒᵖ g : A ⟶ B ⊢ (cokernel.π f).op ≫ f.op = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Abelian.Basic import Mathlib.CategoryTheory.Preadditive.Opposite import Mathlib.CategoryTheory.Limits.Opposites #align_import category_theory.abelian.opposite from "leanprover-community/mathlib"@"a5ff45a1c92c278b03b52459a620cfd9c49ebc80" /-! # The opposite of an abelian category is abelian. -/ noncomputable section namespace CategoryTheory open CategoryTheory.Limits variable (C : Type*) [Category C] [Abelian C] -- porting note: these local instances do not seem to be necessary --attribute [local instance] -- hasFiniteLimits_of_hasEqualizers_and_finite_products -- hasFiniteColimits_of_hasCoequalizers_and_finite_coproducts -- Abelian.hasFiniteBiproducts instance : Abelian Cᵒᵖ := by -- porting note: priorities of `Abelian.has_kernels` and `Abelian.has_cokernels` have -- been set to 90 in `Abelian.Basic` in order to prevent a timeout here exact { normalMonoOfMono := fun f => normalMonoOfNormalEpiUnop _ (normalEpiOfEpi f.unop) normalEpiOfEpi := fun f => normalEpiOfNormalMonoUnop _ (normalMonoOfMono f.unop) } section variable {C} variable {X Y : C} (f : X ⟶ Y) {A B : Cᵒᵖ} (g : A ⟶ B) -- TODO: Generalize (this will work whenever f has a cokernel) -- (The abelian case is probably sufficient for most applications.) /-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by
simp [← op_comp]
/-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by
Mathlib.CategoryTheory.Abelian.Opposite.45_0.3nBRs3fSYrCoEsT
/-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom
Mathlib_CategoryTheory_Abelian_Opposite
C : Type u_1 inst✝¹ : Category.{?u.2298, u_1} C inst✝ : Abelian C X Y : C f : X ⟶ Y A B : Cᵒᵖ g : A ⟶ B ⊢ f ≫ (kernel.ι f.op).unop = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Abelian.Basic import Mathlib.CategoryTheory.Preadditive.Opposite import Mathlib.CategoryTheory.Limits.Opposites #align_import category_theory.abelian.opposite from "leanprover-community/mathlib"@"a5ff45a1c92c278b03b52459a620cfd9c49ebc80" /-! # The opposite of an abelian category is abelian. -/ noncomputable section namespace CategoryTheory open CategoryTheory.Limits variable (C : Type*) [Category C] [Abelian C] -- porting note: these local instances do not seem to be necessary --attribute [local instance] -- hasFiniteLimits_of_hasEqualizers_and_finite_products -- hasFiniteColimits_of_hasCoequalizers_and_finite_coproducts -- Abelian.hasFiniteBiproducts instance : Abelian Cᵒᵖ := by -- porting note: priorities of `Abelian.has_kernels` and `Abelian.has_cokernels` have -- been set to 90 in `Abelian.Basic` in order to prevent a timeout here exact { normalMonoOfMono := fun f => normalMonoOfNormalEpiUnop _ (normalEpiOfEpi f.unop) normalEpiOfEpi := fun f => normalEpiOfNormalMonoUnop _ (normalMonoOfMono f.unop) } section variable {C} variable {X Y : C} (f : X ⟶ Y) {A B : Cᵒᵖ} (g : A ⟶ B) -- TODO: Generalize (this will work whenever f has a cokernel) -- (The abelian case is probably sufficient for most applications.) /-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by
rw [← f.unop_op, ← unop_comp, f.unop_op]
/-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by
Mathlib.CategoryTheory.Abelian.Opposite.45_0.3nBRs3fSYrCoEsT
/-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom
Mathlib_CategoryTheory_Abelian_Opposite
C : Type u_1 inst✝¹ : Category.{?u.2298, u_1} C inst✝ : Abelian C X Y : C f : X ⟶ Y A B : Cᵒᵖ g : A ⟶ B ⊢ (kernel.ι f.op ≫ f.op).unop = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Abelian.Basic import Mathlib.CategoryTheory.Preadditive.Opposite import Mathlib.CategoryTheory.Limits.Opposites #align_import category_theory.abelian.opposite from "leanprover-community/mathlib"@"a5ff45a1c92c278b03b52459a620cfd9c49ebc80" /-! # The opposite of an abelian category is abelian. -/ noncomputable section namespace CategoryTheory open CategoryTheory.Limits variable (C : Type*) [Category C] [Abelian C] -- porting note: these local instances do not seem to be necessary --attribute [local instance] -- hasFiniteLimits_of_hasEqualizers_and_finite_products -- hasFiniteColimits_of_hasCoequalizers_and_finite_coproducts -- Abelian.hasFiniteBiproducts instance : Abelian Cᵒᵖ := by -- porting note: priorities of `Abelian.has_kernels` and `Abelian.has_cokernels` have -- been set to 90 in `Abelian.Basic` in order to prevent a timeout here exact { normalMonoOfMono := fun f => normalMonoOfNormalEpiUnop _ (normalEpiOfEpi f.unop) normalEpiOfEpi := fun f => normalEpiOfNormalMonoUnop _ (normalMonoOfMono f.unop) } section variable {C} variable {X Y : C} (f : X ⟶ Y) {A B : Cᵒᵖ} (g : A ⟶ B) -- TODO: Generalize (this will work whenever f has a cokernel) -- (The abelian case is probably sufficient for most applications.) /-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op]
simp
/-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op]
Mathlib.CategoryTheory.Abelian.Opposite.45_0.3nBRs3fSYrCoEsT
/-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom
Mathlib_CategoryTheory_Abelian_Opposite
C : Type u_1 inst✝¹ : Category.{?u.2298, u_1} C inst✝ : Abelian C X Y : C f : X ⟶ Y A B : Cᵒᵖ g : A ⟶ B ⊢ (kernel.lift f.op (cokernel.π f).op (_ : (f ≫ cokernel.π f).op = 0)).unop ≫ cokernel.desc f (kernel.ι f.op).unop (_ : f ≫ (kernel.ι f.op).unop = 0) = 𝟙 (kernel f.op).unop
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Abelian.Basic import Mathlib.CategoryTheory.Preadditive.Opposite import Mathlib.CategoryTheory.Limits.Opposites #align_import category_theory.abelian.opposite from "leanprover-community/mathlib"@"a5ff45a1c92c278b03b52459a620cfd9c49ebc80" /-! # The opposite of an abelian category is abelian. -/ noncomputable section namespace CategoryTheory open CategoryTheory.Limits variable (C : Type*) [Category C] [Abelian C] -- porting note: these local instances do not seem to be necessary --attribute [local instance] -- hasFiniteLimits_of_hasEqualizers_and_finite_products -- hasFiniteColimits_of_hasCoequalizers_and_finite_coproducts -- Abelian.hasFiniteBiproducts instance : Abelian Cᵒᵖ := by -- porting note: priorities of `Abelian.has_kernels` and `Abelian.has_cokernels` have -- been set to 90 in `Abelian.Basic` in order to prevent a timeout here exact { normalMonoOfMono := fun f => normalMonoOfNormalEpiUnop _ (normalEpiOfEpi f.unop) normalEpiOfEpi := fun f => normalEpiOfNormalMonoUnop _ (normalMonoOfMono f.unop) } section variable {C} variable {X Y : C} (f : X ⟶ Y) {A B : Cᵒᵖ} (g : A ⟶ B) -- TODO: Generalize (this will work whenever f has a cokernel) -- (The abelian case is probably sufficient for most applications.) /-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp hom_inv_id := by
rw [← unop_id, ← (cokernel.desc f _ _).unop_op, ← unop_comp]
/-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp hom_inv_id := by
Mathlib.CategoryTheory.Abelian.Opposite.45_0.3nBRs3fSYrCoEsT
/-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom
Mathlib_CategoryTheory_Abelian_Opposite
C : Type u_1 inst✝¹ : Category.{?u.2298, u_1} C inst✝ : Abelian C X Y : C f : X ⟶ Y A B : Cᵒᵖ g : A ⟶ B ⊢ ((cokernel.desc f (kernel.ι f.op).unop (_ : f ≫ (kernel.ι f.op).unop = 0)).op ≫ kernel.lift f.op (cokernel.π f).op (_ : (f ≫ cokernel.π f).op = 0)).unop = (𝟙 (kernel f.op)).unop
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Abelian.Basic import Mathlib.CategoryTheory.Preadditive.Opposite import Mathlib.CategoryTheory.Limits.Opposites #align_import category_theory.abelian.opposite from "leanprover-community/mathlib"@"a5ff45a1c92c278b03b52459a620cfd9c49ebc80" /-! # The opposite of an abelian category is abelian. -/ noncomputable section namespace CategoryTheory open CategoryTheory.Limits variable (C : Type*) [Category C] [Abelian C] -- porting note: these local instances do not seem to be necessary --attribute [local instance] -- hasFiniteLimits_of_hasEqualizers_and_finite_products -- hasFiniteColimits_of_hasCoequalizers_and_finite_coproducts -- Abelian.hasFiniteBiproducts instance : Abelian Cᵒᵖ := by -- porting note: priorities of `Abelian.has_kernels` and `Abelian.has_cokernels` have -- been set to 90 in `Abelian.Basic` in order to prevent a timeout here exact { normalMonoOfMono := fun f => normalMonoOfNormalEpiUnop _ (normalEpiOfEpi f.unop) normalEpiOfEpi := fun f => normalEpiOfNormalMonoUnop _ (normalMonoOfMono f.unop) } section variable {C} variable {X Y : C} (f : X ⟶ Y) {A B : Cᵒᵖ} (g : A ⟶ B) -- TODO: Generalize (this will work whenever f has a cokernel) -- (The abelian case is probably sufficient for most applications.) /-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp hom_inv_id := by rw [← unop_id, ← (cokernel.desc f _ _).unop_op, ← unop_comp]
congr 1
/-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp hom_inv_id := by rw [← unop_id, ← (cokernel.desc f _ _).unop_op, ← unop_comp]
Mathlib.CategoryTheory.Abelian.Opposite.45_0.3nBRs3fSYrCoEsT
/-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom
Mathlib_CategoryTheory_Abelian_Opposite
case e_f C : Type u_1 inst✝¹ : Category.{?u.2298, u_1} C inst✝ : Abelian C X Y : C f : X ⟶ Y A B : Cᵒᵖ g : A ⟶ B ⊢ (cokernel.desc f (kernel.ι f.op).unop (_ : f ≫ (kernel.ι f.op).unop = 0)).op ≫ kernel.lift f.op (cokernel.π f).op (_ : (f ≫ cokernel.π f).op = 0) = 𝟙 (kernel f.op)
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Abelian.Basic import Mathlib.CategoryTheory.Preadditive.Opposite import Mathlib.CategoryTheory.Limits.Opposites #align_import category_theory.abelian.opposite from "leanprover-community/mathlib"@"a5ff45a1c92c278b03b52459a620cfd9c49ebc80" /-! # The opposite of an abelian category is abelian. -/ noncomputable section namespace CategoryTheory open CategoryTheory.Limits variable (C : Type*) [Category C] [Abelian C] -- porting note: these local instances do not seem to be necessary --attribute [local instance] -- hasFiniteLimits_of_hasEqualizers_and_finite_products -- hasFiniteColimits_of_hasCoequalizers_and_finite_coproducts -- Abelian.hasFiniteBiproducts instance : Abelian Cᵒᵖ := by -- porting note: priorities of `Abelian.has_kernels` and `Abelian.has_cokernels` have -- been set to 90 in `Abelian.Basic` in order to prevent a timeout here exact { normalMonoOfMono := fun f => normalMonoOfNormalEpiUnop _ (normalEpiOfEpi f.unop) normalEpiOfEpi := fun f => normalEpiOfNormalMonoUnop _ (normalMonoOfMono f.unop) } section variable {C} variable {X Y : C} (f : X ⟶ Y) {A B : Cᵒᵖ} (g : A ⟶ B) -- TODO: Generalize (this will work whenever f has a cokernel) -- (The abelian case is probably sufficient for most applications.) /-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp hom_inv_id := by rw [← unop_id, ← (cokernel.desc f _ _).unop_op, ← unop_comp] congr 1
ext
/-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp hom_inv_id := by rw [← unop_id, ← (cokernel.desc f _ _).unop_op, ← unop_comp] congr 1
Mathlib.CategoryTheory.Abelian.Opposite.45_0.3nBRs3fSYrCoEsT
/-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom
Mathlib_CategoryTheory_Abelian_Opposite
case e_f.h C : Type u_1 inst✝¹ : Category.{?u.2298, u_1} C inst✝ : Abelian C X Y : C f : X ⟶ Y A B : Cᵒᵖ g : A ⟶ B ⊢ ((cokernel.desc f (kernel.ι f.op).unop (_ : f ≫ (kernel.ι f.op).unop = 0)).op ≫ kernel.lift f.op (cokernel.π f).op (_ : (f ≫ cokernel.π f).op = 0)) ≫ equalizer.ι f.op 0 = 𝟙 (kernel f.op) ≫ equalizer.ι f.op 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Abelian.Basic import Mathlib.CategoryTheory.Preadditive.Opposite import Mathlib.CategoryTheory.Limits.Opposites #align_import category_theory.abelian.opposite from "leanprover-community/mathlib"@"a5ff45a1c92c278b03b52459a620cfd9c49ebc80" /-! # The opposite of an abelian category is abelian. -/ noncomputable section namespace CategoryTheory open CategoryTheory.Limits variable (C : Type*) [Category C] [Abelian C] -- porting note: these local instances do not seem to be necessary --attribute [local instance] -- hasFiniteLimits_of_hasEqualizers_and_finite_products -- hasFiniteColimits_of_hasCoequalizers_and_finite_coproducts -- Abelian.hasFiniteBiproducts instance : Abelian Cᵒᵖ := by -- porting note: priorities of `Abelian.has_kernels` and `Abelian.has_cokernels` have -- been set to 90 in `Abelian.Basic` in order to prevent a timeout here exact { normalMonoOfMono := fun f => normalMonoOfNormalEpiUnop _ (normalEpiOfEpi f.unop) normalEpiOfEpi := fun f => normalEpiOfNormalMonoUnop _ (normalMonoOfMono f.unop) } section variable {C} variable {X Y : C} (f : X ⟶ Y) {A B : Cᵒᵖ} (g : A ⟶ B) -- TODO: Generalize (this will work whenever f has a cokernel) -- (The abelian case is probably sufficient for most applications.) /-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp hom_inv_id := by rw [← unop_id, ← (cokernel.desc f _ _).unop_op, ← unop_comp] congr 1 ext
simp [← op_comp]
/-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp hom_inv_id := by rw [← unop_id, ← (cokernel.desc f _ _).unop_op, ← unop_comp] congr 1 ext
Mathlib.CategoryTheory.Abelian.Opposite.45_0.3nBRs3fSYrCoEsT
/-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom
Mathlib_CategoryTheory_Abelian_Opposite
C : Type u_1 inst✝¹ : Category.{?u.2298, u_1} C inst✝ : Abelian C X Y : C f : X ⟶ Y A B : Cᵒᵖ g : A ⟶ B ⊢ cokernel.desc f (kernel.ι f.op).unop (_ : f ≫ (kernel.ι f.op).unop = 0) ≫ (kernel.lift f.op (cokernel.π f).op (_ : (f ≫ cokernel.π f).op = 0)).unop = 𝟙 (cokernel f)
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Abelian.Basic import Mathlib.CategoryTheory.Preadditive.Opposite import Mathlib.CategoryTheory.Limits.Opposites #align_import category_theory.abelian.opposite from "leanprover-community/mathlib"@"a5ff45a1c92c278b03b52459a620cfd9c49ebc80" /-! # The opposite of an abelian category is abelian. -/ noncomputable section namespace CategoryTheory open CategoryTheory.Limits variable (C : Type*) [Category C] [Abelian C] -- porting note: these local instances do not seem to be necessary --attribute [local instance] -- hasFiniteLimits_of_hasEqualizers_and_finite_products -- hasFiniteColimits_of_hasCoequalizers_and_finite_coproducts -- Abelian.hasFiniteBiproducts instance : Abelian Cᵒᵖ := by -- porting note: priorities of `Abelian.has_kernels` and `Abelian.has_cokernels` have -- been set to 90 in `Abelian.Basic` in order to prevent a timeout here exact { normalMonoOfMono := fun f => normalMonoOfNormalEpiUnop _ (normalEpiOfEpi f.unop) normalEpiOfEpi := fun f => normalEpiOfNormalMonoUnop _ (normalMonoOfMono f.unop) } section variable {C} variable {X Y : C} (f : X ⟶ Y) {A B : Cᵒᵖ} (g : A ⟶ B) -- TODO: Generalize (this will work whenever f has a cokernel) -- (The abelian case is probably sufficient for most applications.) /-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp hom_inv_id := by rw [← unop_id, ← (cokernel.desc f _ _).unop_op, ← unop_comp] congr 1 ext simp [← op_comp] inv_hom_id := by
ext
/-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp hom_inv_id := by rw [← unop_id, ← (cokernel.desc f _ _).unop_op, ← unop_comp] congr 1 ext simp [← op_comp] inv_hom_id := by
Mathlib.CategoryTheory.Abelian.Opposite.45_0.3nBRs3fSYrCoEsT
/-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom
Mathlib_CategoryTheory_Abelian_Opposite
case h C : Type u_1 inst✝¹ : Category.{?u.2298, u_1} C inst✝ : Abelian C X Y : C f : X ⟶ Y A B : Cᵒᵖ g : A ⟶ B ⊢ coequalizer.π f 0 ≫ cokernel.desc f (kernel.ι f.op).unop (_ : f ≫ (kernel.ι f.op).unop = 0) ≫ (kernel.lift f.op (cokernel.π f).op (_ : (f ≫ cokernel.π f).op = 0)).unop = coequalizer.π f 0 ≫ 𝟙 (cokernel f)
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Abelian.Basic import Mathlib.CategoryTheory.Preadditive.Opposite import Mathlib.CategoryTheory.Limits.Opposites #align_import category_theory.abelian.opposite from "leanprover-community/mathlib"@"a5ff45a1c92c278b03b52459a620cfd9c49ebc80" /-! # The opposite of an abelian category is abelian. -/ noncomputable section namespace CategoryTheory open CategoryTheory.Limits variable (C : Type*) [Category C] [Abelian C] -- porting note: these local instances do not seem to be necessary --attribute [local instance] -- hasFiniteLimits_of_hasEqualizers_and_finite_products -- hasFiniteColimits_of_hasCoequalizers_and_finite_coproducts -- Abelian.hasFiniteBiproducts instance : Abelian Cᵒᵖ := by -- porting note: priorities of `Abelian.has_kernels` and `Abelian.has_cokernels` have -- been set to 90 in `Abelian.Basic` in order to prevent a timeout here exact { normalMonoOfMono := fun f => normalMonoOfNormalEpiUnop _ (normalEpiOfEpi f.unop) normalEpiOfEpi := fun f => normalEpiOfNormalMonoUnop _ (normalMonoOfMono f.unop) } section variable {C} variable {X Y : C} (f : X ⟶ Y) {A B : Cᵒᵖ} (g : A ⟶ B) -- TODO: Generalize (this will work whenever f has a cokernel) -- (The abelian case is probably sufficient for most applications.) /-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp hom_inv_id := by rw [← unop_id, ← (cokernel.desc f _ _).unop_op, ← unop_comp] congr 1 ext simp [← op_comp] inv_hom_id := by ext
simp [← unop_comp]
/-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp hom_inv_id := by rw [← unop_id, ← (cokernel.desc f _ _).unop_op, ← unop_comp] congr 1 ext simp [← op_comp] inv_hom_id := by ext
Mathlib.CategoryTheory.Abelian.Opposite.45_0.3nBRs3fSYrCoEsT
/-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom
Mathlib_CategoryTheory_Abelian_Opposite
C : Type u_1 inst✝¹ : Category.{?u.12173, u_1} C inst✝ : Abelian C X Y : C f : X ⟶ Y A B : Cᵒᵖ g : A ⟶ B ⊢ (cokernel.π f.op).unop ≫ f = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Abelian.Basic import Mathlib.CategoryTheory.Preadditive.Opposite import Mathlib.CategoryTheory.Limits.Opposites #align_import category_theory.abelian.opposite from "leanprover-community/mathlib"@"a5ff45a1c92c278b03b52459a620cfd9c49ebc80" /-! # The opposite of an abelian category is abelian. -/ noncomputable section namespace CategoryTheory open CategoryTheory.Limits variable (C : Type*) [Category C] [Abelian C] -- porting note: these local instances do not seem to be necessary --attribute [local instance] -- hasFiniteLimits_of_hasEqualizers_and_finite_products -- hasFiniteColimits_of_hasCoequalizers_and_finite_coproducts -- Abelian.hasFiniteBiproducts instance : Abelian Cᵒᵖ := by -- porting note: priorities of `Abelian.has_kernels` and `Abelian.has_cokernels` have -- been set to 90 in `Abelian.Basic` in order to prevent a timeout here exact { normalMonoOfMono := fun f => normalMonoOfNormalEpiUnop _ (normalEpiOfEpi f.unop) normalEpiOfEpi := fun f => normalEpiOfNormalMonoUnop _ (normalMonoOfMono f.unop) } section variable {C} variable {X Y : C} (f : X ⟶ Y) {A B : Cᵒᵖ} (g : A ⟶ B) -- TODO: Generalize (this will work whenever f has a cokernel) -- (The abelian case is probably sufficient for most applications.) /-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp hom_inv_id := by rw [← unop_id, ← (cokernel.desc f _ _).unop_op, ← unop_comp] congr 1 ext simp [← op_comp] inv_hom_id := by ext simp [← unop_comp] #align category_theory.kernel_op_unop CategoryTheory.kernelOpUnop -- TODO: Generalize (this will work whenever f has a kernel) -- (The abelian case is probably sufficient for most applications.) /-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom := kernel.lift f (cokernel.π f.op).unop <| by
rw [← f.unop_op, ← unop_comp, f.unop_op]
/-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom := kernel.lift f (cokernel.π f.op).unop <| by
Mathlib.CategoryTheory.Abelian.Opposite.65_0.3nBRs3fSYrCoEsT
/-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom
Mathlib_CategoryTheory_Abelian_Opposite
C : Type u_1 inst✝¹ : Category.{?u.12173, u_1} C inst✝ : Abelian C X Y : C f : X ⟶ Y A B : Cᵒᵖ g : A ⟶ B ⊢ (f.op ≫ cokernel.π f.op).unop = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Abelian.Basic import Mathlib.CategoryTheory.Preadditive.Opposite import Mathlib.CategoryTheory.Limits.Opposites #align_import category_theory.abelian.opposite from "leanprover-community/mathlib"@"a5ff45a1c92c278b03b52459a620cfd9c49ebc80" /-! # The opposite of an abelian category is abelian. -/ noncomputable section namespace CategoryTheory open CategoryTheory.Limits variable (C : Type*) [Category C] [Abelian C] -- porting note: these local instances do not seem to be necessary --attribute [local instance] -- hasFiniteLimits_of_hasEqualizers_and_finite_products -- hasFiniteColimits_of_hasCoequalizers_and_finite_coproducts -- Abelian.hasFiniteBiproducts instance : Abelian Cᵒᵖ := by -- porting note: priorities of `Abelian.has_kernels` and `Abelian.has_cokernels` have -- been set to 90 in `Abelian.Basic` in order to prevent a timeout here exact { normalMonoOfMono := fun f => normalMonoOfNormalEpiUnop _ (normalEpiOfEpi f.unop) normalEpiOfEpi := fun f => normalEpiOfNormalMonoUnop _ (normalMonoOfMono f.unop) } section variable {C} variable {X Y : C} (f : X ⟶ Y) {A B : Cᵒᵖ} (g : A ⟶ B) -- TODO: Generalize (this will work whenever f has a cokernel) -- (The abelian case is probably sufficient for most applications.) /-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp hom_inv_id := by rw [← unop_id, ← (cokernel.desc f _ _).unop_op, ← unop_comp] congr 1 ext simp [← op_comp] inv_hom_id := by ext simp [← unop_comp] #align category_theory.kernel_op_unop CategoryTheory.kernelOpUnop -- TODO: Generalize (this will work whenever f has a kernel) -- (The abelian case is probably sufficient for most applications.) /-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom := kernel.lift f (cokernel.π f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op]
simp
/-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom := kernel.lift f (cokernel.π f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op]
Mathlib.CategoryTheory.Abelian.Opposite.65_0.3nBRs3fSYrCoEsT
/-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom
Mathlib_CategoryTheory_Abelian_Opposite
C : Type u_1 inst✝¹ : Category.{?u.12173, u_1} C inst✝ : Abelian C X Y : C f : X ⟶ Y A B : Cᵒᵖ g : A ⟶ B ⊢ f.op ≫ (kernel.ι f).op = 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Abelian.Basic import Mathlib.CategoryTheory.Preadditive.Opposite import Mathlib.CategoryTheory.Limits.Opposites #align_import category_theory.abelian.opposite from "leanprover-community/mathlib"@"a5ff45a1c92c278b03b52459a620cfd9c49ebc80" /-! # The opposite of an abelian category is abelian. -/ noncomputable section namespace CategoryTheory open CategoryTheory.Limits variable (C : Type*) [Category C] [Abelian C] -- porting note: these local instances do not seem to be necessary --attribute [local instance] -- hasFiniteLimits_of_hasEqualizers_and_finite_products -- hasFiniteColimits_of_hasCoequalizers_and_finite_coproducts -- Abelian.hasFiniteBiproducts instance : Abelian Cᵒᵖ := by -- porting note: priorities of `Abelian.has_kernels` and `Abelian.has_cokernels` have -- been set to 90 in `Abelian.Basic` in order to prevent a timeout here exact { normalMonoOfMono := fun f => normalMonoOfNormalEpiUnop _ (normalEpiOfEpi f.unop) normalEpiOfEpi := fun f => normalEpiOfNormalMonoUnop _ (normalMonoOfMono f.unop) } section variable {C} variable {X Y : C} (f : X ⟶ Y) {A B : Cᵒᵖ} (g : A ⟶ B) -- TODO: Generalize (this will work whenever f has a cokernel) -- (The abelian case is probably sufficient for most applications.) /-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp hom_inv_id := by rw [← unop_id, ← (cokernel.desc f _ _).unop_op, ← unop_comp] congr 1 ext simp [← op_comp] inv_hom_id := by ext simp [← unop_comp] #align category_theory.kernel_op_unop CategoryTheory.kernelOpUnop -- TODO: Generalize (this will work whenever f has a kernel) -- (The abelian case is probably sufficient for most applications.) /-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom := kernel.lift f (cokernel.π f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp inv := (cokernel.desc f.op (kernel.ι f).op <| by
simp [← op_comp]
/-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom := kernel.lift f (cokernel.π f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp inv := (cokernel.desc f.op (kernel.ι f).op <| by
Mathlib.CategoryTheory.Abelian.Opposite.65_0.3nBRs3fSYrCoEsT
/-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom
Mathlib_CategoryTheory_Abelian_Opposite
C : Type u_1 inst✝¹ : Category.{?u.12173, u_1} C inst✝ : Abelian C X Y : C f : X ⟶ Y A B : Cᵒᵖ g : A ⟶ B ⊢ kernel.lift f (cokernel.π f.op).unop (_ : (cokernel.π f.op).unop ≫ f = 0) ≫ (cokernel.desc f.op (kernel.ι f).op (_ : (kernel.ι f ≫ f).op = 0)).unop = 𝟙 (cokernel f.op).unop
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Abelian.Basic import Mathlib.CategoryTheory.Preadditive.Opposite import Mathlib.CategoryTheory.Limits.Opposites #align_import category_theory.abelian.opposite from "leanprover-community/mathlib"@"a5ff45a1c92c278b03b52459a620cfd9c49ebc80" /-! # The opposite of an abelian category is abelian. -/ noncomputable section namespace CategoryTheory open CategoryTheory.Limits variable (C : Type*) [Category C] [Abelian C] -- porting note: these local instances do not seem to be necessary --attribute [local instance] -- hasFiniteLimits_of_hasEqualizers_and_finite_products -- hasFiniteColimits_of_hasCoequalizers_and_finite_coproducts -- Abelian.hasFiniteBiproducts instance : Abelian Cᵒᵖ := by -- porting note: priorities of `Abelian.has_kernels` and `Abelian.has_cokernels` have -- been set to 90 in `Abelian.Basic` in order to prevent a timeout here exact { normalMonoOfMono := fun f => normalMonoOfNormalEpiUnop _ (normalEpiOfEpi f.unop) normalEpiOfEpi := fun f => normalEpiOfNormalMonoUnop _ (normalMonoOfMono f.unop) } section variable {C} variable {X Y : C} (f : X ⟶ Y) {A B : Cᵒᵖ} (g : A ⟶ B) -- TODO: Generalize (this will work whenever f has a cokernel) -- (The abelian case is probably sufficient for most applications.) /-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp hom_inv_id := by rw [← unop_id, ← (cokernel.desc f _ _).unop_op, ← unop_comp] congr 1 ext simp [← op_comp] inv_hom_id := by ext simp [← unop_comp] #align category_theory.kernel_op_unop CategoryTheory.kernelOpUnop -- TODO: Generalize (this will work whenever f has a kernel) -- (The abelian case is probably sufficient for most applications.) /-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom := kernel.lift f (cokernel.π f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp inv := (cokernel.desc f.op (kernel.ι f).op <| by simp [← op_comp]).unop hom_inv_id := by
rw [← unop_id, ← (kernel.lift f _ _).unop_op, ← unop_comp]
/-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom := kernel.lift f (cokernel.π f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp inv := (cokernel.desc f.op (kernel.ι f).op <| by simp [← op_comp]).unop hom_inv_id := by
Mathlib.CategoryTheory.Abelian.Opposite.65_0.3nBRs3fSYrCoEsT
/-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom
Mathlib_CategoryTheory_Abelian_Opposite
C : Type u_1 inst✝¹ : Category.{?u.12173, u_1} C inst✝ : Abelian C X Y : C f : X ⟶ Y A B : Cᵒᵖ g : A ⟶ B ⊢ (cokernel.desc f.op (kernel.ι f).op (_ : (kernel.ι f ≫ f).op = 0) ≫ (kernel.lift f (cokernel.π f.op).unop (_ : (cokernel.π f.op).unop ≫ f = 0)).op).unop = (𝟙 (cokernel f.op)).unop
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Abelian.Basic import Mathlib.CategoryTheory.Preadditive.Opposite import Mathlib.CategoryTheory.Limits.Opposites #align_import category_theory.abelian.opposite from "leanprover-community/mathlib"@"a5ff45a1c92c278b03b52459a620cfd9c49ebc80" /-! # The opposite of an abelian category is abelian. -/ noncomputable section namespace CategoryTheory open CategoryTheory.Limits variable (C : Type*) [Category C] [Abelian C] -- porting note: these local instances do not seem to be necessary --attribute [local instance] -- hasFiniteLimits_of_hasEqualizers_and_finite_products -- hasFiniteColimits_of_hasCoequalizers_and_finite_coproducts -- Abelian.hasFiniteBiproducts instance : Abelian Cᵒᵖ := by -- porting note: priorities of `Abelian.has_kernels` and `Abelian.has_cokernels` have -- been set to 90 in `Abelian.Basic` in order to prevent a timeout here exact { normalMonoOfMono := fun f => normalMonoOfNormalEpiUnop _ (normalEpiOfEpi f.unop) normalEpiOfEpi := fun f => normalEpiOfNormalMonoUnop _ (normalMonoOfMono f.unop) } section variable {C} variable {X Y : C} (f : X ⟶ Y) {A B : Cᵒᵖ} (g : A ⟶ B) -- TODO: Generalize (this will work whenever f has a cokernel) -- (The abelian case is probably sufficient for most applications.) /-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp hom_inv_id := by rw [← unop_id, ← (cokernel.desc f _ _).unop_op, ← unop_comp] congr 1 ext simp [← op_comp] inv_hom_id := by ext simp [← unop_comp] #align category_theory.kernel_op_unop CategoryTheory.kernelOpUnop -- TODO: Generalize (this will work whenever f has a kernel) -- (The abelian case is probably sufficient for most applications.) /-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom := kernel.lift f (cokernel.π f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp inv := (cokernel.desc f.op (kernel.ι f).op <| by simp [← op_comp]).unop hom_inv_id := by rw [← unop_id, ← (kernel.lift f _ _).unop_op, ← unop_comp]
congr 1
/-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom := kernel.lift f (cokernel.π f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp inv := (cokernel.desc f.op (kernel.ι f).op <| by simp [← op_comp]).unop hom_inv_id := by rw [← unop_id, ← (kernel.lift f _ _).unop_op, ← unop_comp]
Mathlib.CategoryTheory.Abelian.Opposite.65_0.3nBRs3fSYrCoEsT
/-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom
Mathlib_CategoryTheory_Abelian_Opposite
case e_f C : Type u_1 inst✝¹ : Category.{?u.12173, u_1} C inst✝ : Abelian C X Y : C f : X ⟶ Y A B : Cᵒᵖ g : A ⟶ B ⊢ cokernel.desc f.op (kernel.ι f).op (_ : (kernel.ι f ≫ f).op = 0) ≫ (kernel.lift f (cokernel.π f.op).unop (_ : (cokernel.π f.op).unop ≫ f = 0)).op = 𝟙 (cokernel f.op)
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Abelian.Basic import Mathlib.CategoryTheory.Preadditive.Opposite import Mathlib.CategoryTheory.Limits.Opposites #align_import category_theory.abelian.opposite from "leanprover-community/mathlib"@"a5ff45a1c92c278b03b52459a620cfd9c49ebc80" /-! # The opposite of an abelian category is abelian. -/ noncomputable section namespace CategoryTheory open CategoryTheory.Limits variable (C : Type*) [Category C] [Abelian C] -- porting note: these local instances do not seem to be necessary --attribute [local instance] -- hasFiniteLimits_of_hasEqualizers_and_finite_products -- hasFiniteColimits_of_hasCoequalizers_and_finite_coproducts -- Abelian.hasFiniteBiproducts instance : Abelian Cᵒᵖ := by -- porting note: priorities of `Abelian.has_kernels` and `Abelian.has_cokernels` have -- been set to 90 in `Abelian.Basic` in order to prevent a timeout here exact { normalMonoOfMono := fun f => normalMonoOfNormalEpiUnop _ (normalEpiOfEpi f.unop) normalEpiOfEpi := fun f => normalEpiOfNormalMonoUnop _ (normalMonoOfMono f.unop) } section variable {C} variable {X Y : C} (f : X ⟶ Y) {A B : Cᵒᵖ} (g : A ⟶ B) -- TODO: Generalize (this will work whenever f has a cokernel) -- (The abelian case is probably sufficient for most applications.) /-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp hom_inv_id := by rw [← unop_id, ← (cokernel.desc f _ _).unop_op, ← unop_comp] congr 1 ext simp [← op_comp] inv_hom_id := by ext simp [← unop_comp] #align category_theory.kernel_op_unop CategoryTheory.kernelOpUnop -- TODO: Generalize (this will work whenever f has a kernel) -- (The abelian case is probably sufficient for most applications.) /-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom := kernel.lift f (cokernel.π f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp inv := (cokernel.desc f.op (kernel.ι f).op <| by simp [← op_comp]).unop hom_inv_id := by rw [← unop_id, ← (kernel.lift f _ _).unop_op, ← unop_comp] congr 1
ext
/-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom := kernel.lift f (cokernel.π f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp inv := (cokernel.desc f.op (kernel.ι f).op <| by simp [← op_comp]).unop hom_inv_id := by rw [← unop_id, ← (kernel.lift f _ _).unop_op, ← unop_comp] congr 1
Mathlib.CategoryTheory.Abelian.Opposite.65_0.3nBRs3fSYrCoEsT
/-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom
Mathlib_CategoryTheory_Abelian_Opposite
case e_f.h C : Type u_1 inst✝¹ : Category.{?u.12173, u_1} C inst✝ : Abelian C X Y : C f : X ⟶ Y A B : Cᵒᵖ g : A ⟶ B ⊢ coequalizer.π f.op 0 ≫ cokernel.desc f.op (kernel.ι f).op (_ : (kernel.ι f ≫ f).op = 0) ≫ (kernel.lift f (cokernel.π f.op).unop (_ : (cokernel.π f.op).unop ≫ f = 0)).op = coequalizer.π f.op 0 ≫ 𝟙 (cokernel f.op)
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Abelian.Basic import Mathlib.CategoryTheory.Preadditive.Opposite import Mathlib.CategoryTheory.Limits.Opposites #align_import category_theory.abelian.opposite from "leanprover-community/mathlib"@"a5ff45a1c92c278b03b52459a620cfd9c49ebc80" /-! # The opposite of an abelian category is abelian. -/ noncomputable section namespace CategoryTheory open CategoryTheory.Limits variable (C : Type*) [Category C] [Abelian C] -- porting note: these local instances do not seem to be necessary --attribute [local instance] -- hasFiniteLimits_of_hasEqualizers_and_finite_products -- hasFiniteColimits_of_hasCoequalizers_and_finite_coproducts -- Abelian.hasFiniteBiproducts instance : Abelian Cᵒᵖ := by -- porting note: priorities of `Abelian.has_kernels` and `Abelian.has_cokernels` have -- been set to 90 in `Abelian.Basic` in order to prevent a timeout here exact { normalMonoOfMono := fun f => normalMonoOfNormalEpiUnop _ (normalEpiOfEpi f.unop) normalEpiOfEpi := fun f => normalEpiOfNormalMonoUnop _ (normalMonoOfMono f.unop) } section variable {C} variable {X Y : C} (f : X ⟶ Y) {A B : Cᵒᵖ} (g : A ⟶ B) -- TODO: Generalize (this will work whenever f has a cokernel) -- (The abelian case is probably sufficient for most applications.) /-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp hom_inv_id := by rw [← unop_id, ← (cokernel.desc f _ _).unop_op, ← unop_comp] congr 1 ext simp [← op_comp] inv_hom_id := by ext simp [← unop_comp] #align category_theory.kernel_op_unop CategoryTheory.kernelOpUnop -- TODO: Generalize (this will work whenever f has a kernel) -- (The abelian case is probably sufficient for most applications.) /-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom := kernel.lift f (cokernel.π f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp inv := (cokernel.desc f.op (kernel.ι f).op <| by simp [← op_comp]).unop hom_inv_id := by rw [← unop_id, ← (kernel.lift f _ _).unop_op, ← unop_comp] congr 1 ext
simp [← op_comp]
/-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom := kernel.lift f (cokernel.π f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp inv := (cokernel.desc f.op (kernel.ι f).op <| by simp [← op_comp]).unop hom_inv_id := by rw [← unop_id, ← (kernel.lift f _ _).unop_op, ← unop_comp] congr 1 ext
Mathlib.CategoryTheory.Abelian.Opposite.65_0.3nBRs3fSYrCoEsT
/-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom
Mathlib_CategoryTheory_Abelian_Opposite
C : Type u_1 inst✝¹ : Category.{?u.12173, u_1} C inst✝ : Abelian C X Y : C f : X ⟶ Y A B : Cᵒᵖ g : A ⟶ B ⊢ (cokernel.desc f.op (kernel.ι f).op (_ : (kernel.ι f ≫ f).op = 0)).unop ≫ kernel.lift f (cokernel.π f.op).unop (_ : (cokernel.π f.op).unop ≫ f = 0) = 𝟙 (kernel f)
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Abelian.Basic import Mathlib.CategoryTheory.Preadditive.Opposite import Mathlib.CategoryTheory.Limits.Opposites #align_import category_theory.abelian.opposite from "leanprover-community/mathlib"@"a5ff45a1c92c278b03b52459a620cfd9c49ebc80" /-! # The opposite of an abelian category is abelian. -/ noncomputable section namespace CategoryTheory open CategoryTheory.Limits variable (C : Type*) [Category C] [Abelian C] -- porting note: these local instances do not seem to be necessary --attribute [local instance] -- hasFiniteLimits_of_hasEqualizers_and_finite_products -- hasFiniteColimits_of_hasCoequalizers_and_finite_coproducts -- Abelian.hasFiniteBiproducts instance : Abelian Cᵒᵖ := by -- porting note: priorities of `Abelian.has_kernels` and `Abelian.has_cokernels` have -- been set to 90 in `Abelian.Basic` in order to prevent a timeout here exact { normalMonoOfMono := fun f => normalMonoOfNormalEpiUnop _ (normalEpiOfEpi f.unop) normalEpiOfEpi := fun f => normalEpiOfNormalMonoUnop _ (normalMonoOfMono f.unop) } section variable {C} variable {X Y : C} (f : X ⟶ Y) {A B : Cᵒᵖ} (g : A ⟶ B) -- TODO: Generalize (this will work whenever f has a cokernel) -- (The abelian case is probably sufficient for most applications.) /-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp hom_inv_id := by rw [← unop_id, ← (cokernel.desc f _ _).unop_op, ← unop_comp] congr 1 ext simp [← op_comp] inv_hom_id := by ext simp [← unop_comp] #align category_theory.kernel_op_unop CategoryTheory.kernelOpUnop -- TODO: Generalize (this will work whenever f has a kernel) -- (The abelian case is probably sufficient for most applications.) /-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom := kernel.lift f (cokernel.π f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp inv := (cokernel.desc f.op (kernel.ι f).op <| by simp [← op_comp]).unop hom_inv_id := by rw [← unop_id, ← (kernel.lift f _ _).unop_op, ← unop_comp] congr 1 ext simp [← op_comp] inv_hom_id := by
ext
/-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom := kernel.lift f (cokernel.π f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp inv := (cokernel.desc f.op (kernel.ι f).op <| by simp [← op_comp]).unop hom_inv_id := by rw [← unop_id, ← (kernel.lift f _ _).unop_op, ← unop_comp] congr 1 ext simp [← op_comp] inv_hom_id := by
Mathlib.CategoryTheory.Abelian.Opposite.65_0.3nBRs3fSYrCoEsT
/-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom
Mathlib_CategoryTheory_Abelian_Opposite
case h C : Type u_1 inst✝¹ : Category.{?u.12173, u_1} C inst✝ : Abelian C X Y : C f : X ⟶ Y A B : Cᵒᵖ g : A ⟶ B ⊢ ((cokernel.desc f.op (kernel.ι f).op (_ : (kernel.ι f ≫ f).op = 0)).unop ≫ kernel.lift f (cokernel.π f.op).unop (_ : (cokernel.π f.op).unop ≫ f = 0)) ≫ equalizer.ι f 0 = 𝟙 (kernel f) ≫ equalizer.ι f 0
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Abelian.Basic import Mathlib.CategoryTheory.Preadditive.Opposite import Mathlib.CategoryTheory.Limits.Opposites #align_import category_theory.abelian.opposite from "leanprover-community/mathlib"@"a5ff45a1c92c278b03b52459a620cfd9c49ebc80" /-! # The opposite of an abelian category is abelian. -/ noncomputable section namespace CategoryTheory open CategoryTheory.Limits variable (C : Type*) [Category C] [Abelian C] -- porting note: these local instances do not seem to be necessary --attribute [local instance] -- hasFiniteLimits_of_hasEqualizers_and_finite_products -- hasFiniteColimits_of_hasCoequalizers_and_finite_coproducts -- Abelian.hasFiniteBiproducts instance : Abelian Cᵒᵖ := by -- porting note: priorities of `Abelian.has_kernels` and `Abelian.has_cokernels` have -- been set to 90 in `Abelian.Basic` in order to prevent a timeout here exact { normalMonoOfMono := fun f => normalMonoOfNormalEpiUnop _ (normalEpiOfEpi f.unop) normalEpiOfEpi := fun f => normalEpiOfNormalMonoUnop _ (normalMonoOfMono f.unop) } section variable {C} variable {X Y : C} (f : X ⟶ Y) {A B : Cᵒᵖ} (g : A ⟶ B) -- TODO: Generalize (this will work whenever f has a cokernel) -- (The abelian case is probably sufficient for most applications.) /-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp hom_inv_id := by rw [← unop_id, ← (cokernel.desc f _ _).unop_op, ← unop_comp] congr 1 ext simp [← op_comp] inv_hom_id := by ext simp [← unop_comp] #align category_theory.kernel_op_unop CategoryTheory.kernelOpUnop -- TODO: Generalize (this will work whenever f has a kernel) -- (The abelian case is probably sufficient for most applications.) /-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom := kernel.lift f (cokernel.π f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp inv := (cokernel.desc f.op (kernel.ι f).op <| by simp [← op_comp]).unop hom_inv_id := by rw [← unop_id, ← (kernel.lift f _ _).unop_op, ← unop_comp] congr 1 ext simp [← op_comp] inv_hom_id := by ext
simp [← unop_comp]
/-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom := kernel.lift f (cokernel.π f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp inv := (cokernel.desc f.op (kernel.ι f).op <| by simp [← op_comp]).unop hom_inv_id := by rw [← unop_id, ← (kernel.lift f _ _).unop_op, ← unop_comp] congr 1 ext simp [← op_comp] inv_hom_id := by ext
Mathlib.CategoryTheory.Abelian.Opposite.65_0.3nBRs3fSYrCoEsT
/-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom
Mathlib_CategoryTheory_Abelian_Opposite
C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Abelian C X Y : C f : X ⟶ Y A B : Cᵒᵖ g : A ⟶ B ⊢ (cokernel.π f.op).unop = (cokernelOpUnop f).hom ≫ kernel.ι f ≫ eqToHom (_ : X = (Opposite.op X).unop)
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Abelian.Basic import Mathlib.CategoryTheory.Preadditive.Opposite import Mathlib.CategoryTheory.Limits.Opposites #align_import category_theory.abelian.opposite from "leanprover-community/mathlib"@"a5ff45a1c92c278b03b52459a620cfd9c49ebc80" /-! # The opposite of an abelian category is abelian. -/ noncomputable section namespace CategoryTheory open CategoryTheory.Limits variable (C : Type*) [Category C] [Abelian C] -- porting note: these local instances do not seem to be necessary --attribute [local instance] -- hasFiniteLimits_of_hasEqualizers_and_finite_products -- hasFiniteColimits_of_hasCoequalizers_and_finite_coproducts -- Abelian.hasFiniteBiproducts instance : Abelian Cᵒᵖ := by -- porting note: priorities of `Abelian.has_kernels` and `Abelian.has_cokernels` have -- been set to 90 in `Abelian.Basic` in order to prevent a timeout here exact { normalMonoOfMono := fun f => normalMonoOfNormalEpiUnop _ (normalEpiOfEpi f.unop) normalEpiOfEpi := fun f => normalEpiOfNormalMonoUnop _ (normalMonoOfMono f.unop) } section variable {C} variable {X Y : C} (f : X ⟶ Y) {A B : Cᵒᵖ} (g : A ⟶ B) -- TODO: Generalize (this will work whenever f has a cokernel) -- (The abelian case is probably sufficient for most applications.) /-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp hom_inv_id := by rw [← unop_id, ← (cokernel.desc f _ _).unop_op, ← unop_comp] congr 1 ext simp [← op_comp] inv_hom_id := by ext simp [← unop_comp] #align category_theory.kernel_op_unop CategoryTheory.kernelOpUnop -- TODO: Generalize (this will work whenever f has a kernel) -- (The abelian case is probably sufficient for most applications.) /-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom := kernel.lift f (cokernel.π f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp inv := (cokernel.desc f.op (kernel.ι f).op <| by simp [← op_comp]).unop hom_inv_id := by rw [← unop_id, ← (kernel.lift f _ _).unop_op, ← unop_comp] congr 1 ext simp [← op_comp] inv_hom_id := by ext simp [← unop_comp] #align category_theory.cokernel_op_unop CategoryTheory.cokernelOpUnop /-- The kernel of `g.unop` is the opposite of `cokernel g`. -/ @[simps!] def kernelUnopOp : Opposite.op (kernel g.unop) ≅ cokernel g := (cokernelOpUnop g.unop).op #align category_theory.kernel_unop_op CategoryTheory.kernelUnopOp /-- The cokernel of `g.unop` is the opposite of `kernel g`. -/ @[simps!] def cokernelUnopOp : Opposite.op (cokernel g.unop) ≅ kernel g := (kernelOpUnop g.unop).op #align category_theory.cokernel_unop_op CategoryTheory.cokernelUnopOp theorem cokernel.π_op : (cokernel.π f.op).unop = (cokernelOpUnop f).hom ≫ kernel.ι f ≫ eqToHom (Opposite.unop_op _).symm := by
simp [cokernelOpUnop]
theorem cokernel.π_op : (cokernel.π f.op).unop = (cokernelOpUnop f).hom ≫ kernel.ι f ≫ eqToHom (Opposite.unop_op _).symm := by
Mathlib.CategoryTheory.Abelian.Opposite.95_0.3nBRs3fSYrCoEsT
theorem cokernel.π_op : (cokernel.π f.op).unop = (cokernelOpUnop f).hom ≫ kernel.ι f ≫ eqToHom (Opposite.unop_op _).symm
Mathlib_CategoryTheory_Abelian_Opposite
C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Abelian C X Y : C f : X ⟶ Y A B : Cᵒᵖ g : A ⟶ B ⊢ (kernel.ι f.op).unop = eqToHom (_ : (Opposite.op Y).unop = Y) ≫ cokernel.π f ≫ (kernelOpUnop f).inv
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Abelian.Basic import Mathlib.CategoryTheory.Preadditive.Opposite import Mathlib.CategoryTheory.Limits.Opposites #align_import category_theory.abelian.opposite from "leanprover-community/mathlib"@"a5ff45a1c92c278b03b52459a620cfd9c49ebc80" /-! # The opposite of an abelian category is abelian. -/ noncomputable section namespace CategoryTheory open CategoryTheory.Limits variable (C : Type*) [Category C] [Abelian C] -- porting note: these local instances do not seem to be necessary --attribute [local instance] -- hasFiniteLimits_of_hasEqualizers_and_finite_products -- hasFiniteColimits_of_hasCoequalizers_and_finite_coproducts -- Abelian.hasFiniteBiproducts instance : Abelian Cᵒᵖ := by -- porting note: priorities of `Abelian.has_kernels` and `Abelian.has_cokernels` have -- been set to 90 in `Abelian.Basic` in order to prevent a timeout here exact { normalMonoOfMono := fun f => normalMonoOfNormalEpiUnop _ (normalEpiOfEpi f.unop) normalEpiOfEpi := fun f => normalEpiOfNormalMonoUnop _ (normalMonoOfMono f.unop) } section variable {C} variable {X Y : C} (f : X ⟶ Y) {A B : Cᵒᵖ} (g : A ⟶ B) -- TODO: Generalize (this will work whenever f has a cokernel) -- (The abelian case is probably sufficient for most applications.) /-- The kernel of `f.op` is the opposite of `cokernel f`. -/ @[simps] def kernelOpUnop : (kernel f.op).unop ≅ cokernel f where hom := (kernel.lift f.op (cokernel.π f).op <| by simp [← op_comp]).unop inv := cokernel.desc f (kernel.ι f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp hom_inv_id := by rw [← unop_id, ← (cokernel.desc f _ _).unop_op, ← unop_comp] congr 1 ext simp [← op_comp] inv_hom_id := by ext simp [← unop_comp] #align category_theory.kernel_op_unop CategoryTheory.kernelOpUnop -- TODO: Generalize (this will work whenever f has a kernel) -- (The abelian case is probably sufficient for most applications.) /-- The cokernel of `f.op` is the opposite of `kernel f`. -/ @[simps] def cokernelOpUnop : (cokernel f.op).unop ≅ kernel f where hom := kernel.lift f (cokernel.π f.op).unop <| by rw [← f.unop_op, ← unop_comp, f.unop_op] simp inv := (cokernel.desc f.op (kernel.ι f).op <| by simp [← op_comp]).unop hom_inv_id := by rw [← unop_id, ← (kernel.lift f _ _).unop_op, ← unop_comp] congr 1 ext simp [← op_comp] inv_hom_id := by ext simp [← unop_comp] #align category_theory.cokernel_op_unop CategoryTheory.cokernelOpUnop /-- The kernel of `g.unop` is the opposite of `cokernel g`. -/ @[simps!] def kernelUnopOp : Opposite.op (kernel g.unop) ≅ cokernel g := (cokernelOpUnop g.unop).op #align category_theory.kernel_unop_op CategoryTheory.kernelUnopOp /-- The cokernel of `g.unop` is the opposite of `kernel g`. -/ @[simps!] def cokernelUnopOp : Opposite.op (cokernel g.unop) ≅ kernel g := (kernelOpUnop g.unop).op #align category_theory.cokernel_unop_op CategoryTheory.cokernelUnopOp theorem cokernel.π_op : (cokernel.π f.op).unop = (cokernelOpUnop f).hom ≫ kernel.ι f ≫ eqToHom (Opposite.unop_op _).symm := by simp [cokernelOpUnop] #align category_theory.cokernel.π_op CategoryTheory.cokernel.π_op theorem kernel.ι_op : (kernel.ι f.op).unop = eqToHom (Opposite.unop_op _) ≫ cokernel.π f ≫ (kernelOpUnop f).inv := by
simp [kernelOpUnop]
theorem kernel.ι_op : (kernel.ι f.op).unop = eqToHom (Opposite.unop_op _) ≫ cokernel.π f ≫ (kernelOpUnop f).inv := by
Mathlib.CategoryTheory.Abelian.Opposite.101_0.3nBRs3fSYrCoEsT
theorem kernel.ι_op : (kernel.ι f.op).unop = eqToHom (Opposite.unop_op _) ≫ cokernel.π f ≫ (kernelOpUnop f).inv
Mathlib_CategoryTheory_Abelian_Opposite