state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
case refine_3.refine_2 α : Type u_1 inst✝ : DecidableEq α 𝒜✝¹ ℬ✝ : Finset (Finset α) s✝ t✝ : Finset α a✝ : α n : ℕ 𝒜✝ : Finset (Finset α) a : α 𝒜 : Finset (Finset α) ih₀ : card (nonMemberSubfamily a 𝒜) ≤ card (shatterer (nonMemberSubfamily a 𝒜)) ih₁ : card (memberSubfamily a 𝒜) ≤ card (shatterer (memberSubfamily a 𝒜)) ℬ : Finset (Finset α) := image (insert a) (shatterer (memberSubfamily a 𝒜) ∩ shatterer (nonMemberSubfamily a 𝒜)) hℬ : card ℬ = card (shatterer (memberSubfamily a 𝒜) ∩ shatterer (nonMemberSubfamily a 𝒜)) s t : Finset α ht : t ⊆ insert a s hs : Shatters (memberSubfamily a 𝒜) s ∧ Shatters (nonMemberSubfamily a 𝒜) s ⊢ ∃ u ∈ 𝒜, insert a s ∩ u = t
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs
rw [subset_insert_iff] at ht
/-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs
Mathlib.Combinatorics.SetFamily.Shatter.108_0.9SFN902fumqg7uv
/-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card
Mathlib_Combinatorics_SetFamily_Shatter
case refine_3.refine_2 α : Type u_1 inst✝ : DecidableEq α 𝒜✝¹ ℬ✝ : Finset (Finset α) s✝ t✝ : Finset α a✝ : α n : ℕ 𝒜✝ : Finset (Finset α) a : α 𝒜 : Finset (Finset α) ih₀ : card (nonMemberSubfamily a 𝒜) ≤ card (shatterer (nonMemberSubfamily a 𝒜)) ih₁ : card (memberSubfamily a 𝒜) ≤ card (shatterer (memberSubfamily a 𝒜)) ℬ : Finset (Finset α) := image (insert a) (shatterer (memberSubfamily a 𝒜) ∩ shatterer (nonMemberSubfamily a 𝒜)) hℬ : card ℬ = card (shatterer (memberSubfamily a 𝒜) ∩ shatterer (nonMemberSubfamily a 𝒜)) s t : Finset α ht : erase t a ⊆ s hs : Shatters (memberSubfamily a 𝒜) s ∧ Shatters (nonMemberSubfamily a 𝒜) s ⊢ ∃ u ∈ 𝒜, insert a s ∩ u = t
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht
by_cases ha : a ∈ t
/-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht
Mathlib.Combinatorics.SetFamily.Shatter.108_0.9SFN902fumqg7uv
/-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card
Mathlib_Combinatorics_SetFamily_Shatter
case pos α : Type u_1 inst✝ : DecidableEq α 𝒜✝¹ ℬ✝ : Finset (Finset α) s✝ t✝ : Finset α a✝ : α n : ℕ 𝒜✝ : Finset (Finset α) a : α 𝒜 : Finset (Finset α) ih₀ : card (nonMemberSubfamily a 𝒜) ≤ card (shatterer (nonMemberSubfamily a 𝒜)) ih₁ : card (memberSubfamily a 𝒜) ≤ card (shatterer (memberSubfamily a 𝒜)) ℬ : Finset (Finset α) := image (insert a) (shatterer (memberSubfamily a 𝒜) ∩ shatterer (nonMemberSubfamily a 𝒜)) hℬ : card ℬ = card (shatterer (memberSubfamily a 𝒜) ∩ shatterer (nonMemberSubfamily a 𝒜)) s t : Finset α ht : erase t a ⊆ s hs : Shatters (memberSubfamily a 𝒜) s ∧ Shatters (nonMemberSubfamily a 𝒜) s ha : a ∈ t ⊢ ∃ u ∈ 𝒜, insert a s ∩ u = t
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t ·
obtain ⟨u, hu, hsu⟩ := hs.1 ht
/-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t ·
Mathlib.Combinatorics.SetFamily.Shatter.108_0.9SFN902fumqg7uv
/-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card
Mathlib_Combinatorics_SetFamily_Shatter
case pos.intro.intro α : Type u_1 inst✝ : DecidableEq α 𝒜✝¹ ℬ✝ : Finset (Finset α) s✝ t✝ : Finset α a✝ : α n : ℕ 𝒜✝ : Finset (Finset α) a : α 𝒜 : Finset (Finset α) ih₀ : card (nonMemberSubfamily a 𝒜) ≤ card (shatterer (nonMemberSubfamily a 𝒜)) ih₁ : card (memberSubfamily a 𝒜) ≤ card (shatterer (memberSubfamily a 𝒜)) ℬ : Finset (Finset α) := image (insert a) (shatterer (memberSubfamily a 𝒜) ∩ shatterer (nonMemberSubfamily a 𝒜)) hℬ : card ℬ = card (shatterer (memberSubfamily a 𝒜) ∩ shatterer (nonMemberSubfamily a 𝒜)) s t : Finset α ht : erase t a ⊆ s hs : Shatters (memberSubfamily a 𝒜) s ∧ Shatters (nonMemberSubfamily a 𝒜) s ha : a ∈ t u : Finset α hu : u ∈ memberSubfamily a 𝒜 hsu : s ∩ u = erase t a ⊢ ∃ u ∈ 𝒜, insert a s ∩ u = t
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht
rw [mem_memberSubfamily] at hu
/-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht
Mathlib.Combinatorics.SetFamily.Shatter.108_0.9SFN902fumqg7uv
/-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card
Mathlib_Combinatorics_SetFamily_Shatter
case pos.intro.intro α : Type u_1 inst✝ : DecidableEq α 𝒜✝¹ ℬ✝ : Finset (Finset α) s✝ t✝ : Finset α a✝ : α n : ℕ 𝒜✝ : Finset (Finset α) a : α 𝒜 : Finset (Finset α) ih₀ : card (nonMemberSubfamily a 𝒜) ≤ card (shatterer (nonMemberSubfamily a 𝒜)) ih₁ : card (memberSubfamily a 𝒜) ≤ card (shatterer (memberSubfamily a 𝒜)) ℬ : Finset (Finset α) := image (insert a) (shatterer (memberSubfamily a 𝒜) ∩ shatterer (nonMemberSubfamily a 𝒜)) hℬ : card ℬ = card (shatterer (memberSubfamily a 𝒜) ∩ shatterer (nonMemberSubfamily a 𝒜)) s t : Finset α ht : erase t a ⊆ s hs : Shatters (memberSubfamily a 𝒜) s ∧ Shatters (nonMemberSubfamily a 𝒜) s ha : a ∈ t u : Finset α hu : insert a u ∈ 𝒜 ∧ a ∉ u hsu : s ∩ u = erase t a ⊢ ∃ u ∈ 𝒜, insert a s ∩ u = t
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu
refine ⟨_, hu.1, ?_⟩
/-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu
Mathlib.Combinatorics.SetFamily.Shatter.108_0.9SFN902fumqg7uv
/-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card
Mathlib_Combinatorics_SetFamily_Shatter
case pos.intro.intro α : Type u_1 inst✝ : DecidableEq α 𝒜✝¹ ℬ✝ : Finset (Finset α) s✝ t✝ : Finset α a✝ : α n : ℕ 𝒜✝ : Finset (Finset α) a : α 𝒜 : Finset (Finset α) ih₀ : card (nonMemberSubfamily a 𝒜) ≤ card (shatterer (nonMemberSubfamily a 𝒜)) ih₁ : card (memberSubfamily a 𝒜) ≤ card (shatterer (memberSubfamily a 𝒜)) ℬ : Finset (Finset α) := image (insert a) (shatterer (memberSubfamily a 𝒜) ∩ shatterer (nonMemberSubfamily a 𝒜)) hℬ : card ℬ = card (shatterer (memberSubfamily a 𝒜) ∩ shatterer (nonMemberSubfamily a 𝒜)) s t : Finset α ht : erase t a ⊆ s hs : Shatters (memberSubfamily a 𝒜) s ∧ Shatters (nonMemberSubfamily a 𝒜) s ha : a ∈ t u : Finset α hu : insert a u ∈ 𝒜 ∧ a ∉ u hsu : s ∩ u = erase t a ⊢ insert a s ∩ insert a u = t
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩
rw [← insert_inter_distrib, hsu, insert_erase ha]
/-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩
Mathlib.Combinatorics.SetFamily.Shatter.108_0.9SFN902fumqg7uv
/-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card
Mathlib_Combinatorics_SetFamily_Shatter
case neg α : Type u_1 inst✝ : DecidableEq α 𝒜✝¹ ℬ✝ : Finset (Finset α) s✝ t✝ : Finset α a✝ : α n : ℕ 𝒜✝ : Finset (Finset α) a : α 𝒜 : Finset (Finset α) ih₀ : card (nonMemberSubfamily a 𝒜) ≤ card (shatterer (nonMemberSubfamily a 𝒜)) ih₁ : card (memberSubfamily a 𝒜) ≤ card (shatterer (memberSubfamily a 𝒜)) ℬ : Finset (Finset α) := image (insert a) (shatterer (memberSubfamily a 𝒜) ∩ shatterer (nonMemberSubfamily a 𝒜)) hℬ : card ℬ = card (shatterer (memberSubfamily a 𝒜) ∩ shatterer (nonMemberSubfamily a 𝒜)) s t : Finset α ht : erase t a ⊆ s hs : Shatters (memberSubfamily a 𝒜) s ∧ Shatters (nonMemberSubfamily a 𝒜) s ha : a ∉ t ⊢ ∃ u ∈ 𝒜, insert a s ∩ u = t
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] ·
obtain ⟨u, hu, hsu⟩ := hs.2 ht
/-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] ·
Mathlib.Combinatorics.SetFamily.Shatter.108_0.9SFN902fumqg7uv
/-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card
Mathlib_Combinatorics_SetFamily_Shatter
case neg.intro.intro α : Type u_1 inst✝ : DecidableEq α 𝒜✝¹ ℬ✝ : Finset (Finset α) s✝ t✝ : Finset α a✝ : α n : ℕ 𝒜✝ : Finset (Finset α) a : α 𝒜 : Finset (Finset α) ih₀ : card (nonMemberSubfamily a 𝒜) ≤ card (shatterer (nonMemberSubfamily a 𝒜)) ih₁ : card (memberSubfamily a 𝒜) ≤ card (shatterer (memberSubfamily a 𝒜)) ℬ : Finset (Finset α) := image (insert a) (shatterer (memberSubfamily a 𝒜) ∩ shatterer (nonMemberSubfamily a 𝒜)) hℬ : card ℬ = card (shatterer (memberSubfamily a 𝒜) ∩ shatterer (nonMemberSubfamily a 𝒜)) s t : Finset α ht : erase t a ⊆ s hs : Shatters (memberSubfamily a 𝒜) s ∧ Shatters (nonMemberSubfamily a 𝒜) s ha : a ∉ t u : Finset α hu : u ∈ nonMemberSubfamily a 𝒜 hsu : s ∩ u = erase t a ⊢ ∃ u ∈ 𝒜, insert a s ∩ u = t
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht
rw [mem_nonMemberSubfamily] at hu
/-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht
Mathlib.Combinatorics.SetFamily.Shatter.108_0.9SFN902fumqg7uv
/-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card
Mathlib_Combinatorics_SetFamily_Shatter
case neg.intro.intro α : Type u_1 inst✝ : DecidableEq α 𝒜✝¹ ℬ✝ : Finset (Finset α) s✝ t✝ : Finset α a✝ : α n : ℕ 𝒜✝ : Finset (Finset α) a : α 𝒜 : Finset (Finset α) ih₀ : card (nonMemberSubfamily a 𝒜) ≤ card (shatterer (nonMemberSubfamily a 𝒜)) ih₁ : card (memberSubfamily a 𝒜) ≤ card (shatterer (memberSubfamily a 𝒜)) ℬ : Finset (Finset α) := image (insert a) (shatterer (memberSubfamily a 𝒜) ∩ shatterer (nonMemberSubfamily a 𝒜)) hℬ : card ℬ = card (shatterer (memberSubfamily a 𝒜) ∩ shatterer (nonMemberSubfamily a 𝒜)) s t : Finset α ht : erase t a ⊆ s hs : Shatters (memberSubfamily a 𝒜) s ∧ Shatters (nonMemberSubfamily a 𝒜) s ha : a ∉ t u : Finset α hu : u ∈ 𝒜 ∧ a ∉ u hsu : s ∩ u = erase t a ⊢ ∃ u ∈ 𝒜, insert a s ∩ u = t
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu
refine ⟨_, hu.1, ?_⟩
/-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu
Mathlib.Combinatorics.SetFamily.Shatter.108_0.9SFN902fumqg7uv
/-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card
Mathlib_Combinatorics_SetFamily_Shatter
case neg.intro.intro α : Type u_1 inst✝ : DecidableEq α 𝒜✝¹ ℬ✝ : Finset (Finset α) s✝ t✝ : Finset α a✝ : α n : ℕ 𝒜✝ : Finset (Finset α) a : α 𝒜 : Finset (Finset α) ih₀ : card (nonMemberSubfamily a 𝒜) ≤ card (shatterer (nonMemberSubfamily a 𝒜)) ih₁ : card (memberSubfamily a 𝒜) ≤ card (shatterer (memberSubfamily a 𝒜)) ℬ : Finset (Finset α) := image (insert a) (shatterer (memberSubfamily a 𝒜) ∩ shatterer (nonMemberSubfamily a 𝒜)) hℬ : card ℬ = card (shatterer (memberSubfamily a 𝒜) ∩ shatterer (nonMemberSubfamily a 𝒜)) s t : Finset α ht : erase t a ⊆ s hs : Shatters (memberSubfamily a 𝒜) s ∧ Shatters (nonMemberSubfamily a 𝒜) s ha : a ∉ t u : Finset α hu : u ∈ 𝒜 ∧ a ∉ u hsu : s ∩ u = erase t a ⊢ insert a s ∩ u = t
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩
rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self]
/-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩
Mathlib.Combinatorics.SetFamily.Shatter.108_0.9SFN902fumqg7uv
/-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card
Mathlib_Combinatorics_SetFamily_Shatter
α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s t : Finset α a : α n : ℕ hs : Shatters (𝓓 a 𝒜) s ⊢ Shatters 𝒜 s
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by
intros t ht
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by
Mathlib.Combinatorics.SetFamily.Shatter.153_0.9SFN902fumqg7uv
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s
Mathlib_Combinatorics_SetFamily_Shatter
α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s t✝ : Finset α a : α n : ℕ hs : Shatters (𝓓 a 𝒜) s t : Finset α ht : t ⊆ s ⊢ ∃ u ∈ 𝒜, s ∩ u = t
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht
obtain ⟨u, hu, rfl⟩ := hs ht
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht
Mathlib.Combinatorics.SetFamily.Shatter.153_0.9SFN902fumqg7uv
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s
Mathlib_Combinatorics_SetFamily_Shatter
case intro.intro α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s t : Finset α a : α n : ℕ hs : Shatters (𝓓 a 𝒜) s u : Finset α hu : u ∈ 𝓓 a 𝒜 ht : s ∩ u ⊆ s ⊢ ∃ u_1 ∈ 𝒜, s ∩ u_1 = s ∩ u
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht
rw [Down.mem_compression] at hu
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht
Mathlib.Combinatorics.SetFamily.Shatter.153_0.9SFN902fumqg7uv
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s
Mathlib_Combinatorics_SetFamily_Shatter
case intro.intro α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s t : Finset α a : α n : ℕ hs : Shatters (𝓓 a 𝒜) s u : Finset α hu : u ∈ 𝒜 ∧ erase u a ∈ 𝒜 ∨ u ∉ 𝒜 ∧ insert a u ∈ 𝒜 ht : s ∩ u ⊆ s ⊢ ∃ u_1 ∈ 𝒜, s ∩ u_1 = s ∩ u
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu
obtain hu | hu := hu
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu
Mathlib.Combinatorics.SetFamily.Shatter.153_0.9SFN902fumqg7uv
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s
Mathlib_Combinatorics_SetFamily_Shatter
case intro.intro.inl α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s t : Finset α a : α n : ℕ hs : Shatters (𝓓 a 𝒜) s u : Finset α ht : s ∩ u ⊆ s hu : u ∈ 𝒜 ∧ erase u a ∈ 𝒜 ⊢ ∃ u_1 ∈ 𝒜, s ∩ u_1 = s ∩ u
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu ·
exact ⟨u, hu.1, rfl⟩
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu ·
Mathlib.Combinatorics.SetFamily.Shatter.153_0.9SFN902fumqg7uv
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s
Mathlib_Combinatorics_SetFamily_Shatter
case intro.intro.inr α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s t : Finset α a : α n : ℕ hs : Shatters (𝓓 a 𝒜) s u : Finset α ht : s ∩ u ⊆ s hu : u ∉ 𝒜 ∧ insert a u ∈ 𝒜 ⊢ ∃ u_1 ∈ 𝒜, s ∩ u_1 = s ∩ u
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩
by_cases ha : a ∈ s
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩
Mathlib.Combinatorics.SetFamily.Shatter.153_0.9SFN902fumqg7uv
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s
Mathlib_Combinatorics_SetFamily_Shatter
case pos α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s t : Finset α a : α n : ℕ hs : Shatters (𝓓 a 𝒜) s u : Finset α ht : s ∩ u ⊆ s hu : u ∉ 𝒜 ∧ insert a u ∈ 𝒜 ha : a ∈ s ⊢ ∃ u_1 ∈ 𝒜, s ∩ u_1 = s ∩ u
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s ·
obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s ·
Mathlib.Combinatorics.SetFamily.Shatter.153_0.9SFN902fumqg7uv
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s
Mathlib_Combinatorics_SetFamily_Shatter
case pos.intro.intro α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s t : Finset α a : α n : ℕ hs : Shatters (𝓓 a 𝒜) s u : Finset α ht : s ∩ u ⊆ s hu : u ∉ 𝒜 ∧ insert a u ∈ 𝒜 ha : a ∈ s v : Finset α hv : v ∈ 𝓓 a 𝒜 hsv : s ∩ v = insert a (s ∩ u) ⊢ ∃ u_1 ∈ 𝒜, s ∩ u_1 = s ∩ u
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht
rw [Down.mem_compression] at hv
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht
Mathlib.Combinatorics.SetFamily.Shatter.153_0.9SFN902fumqg7uv
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s
Mathlib_Combinatorics_SetFamily_Shatter
case pos.intro.intro α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s t : Finset α a : α n : ℕ hs : Shatters (𝓓 a 𝒜) s u : Finset α ht : s ∩ u ⊆ s hu : u ∉ 𝒜 ∧ insert a u ∈ 𝒜 ha : a ∈ s v : Finset α hv : v ∈ 𝒜 ∧ erase v a ∈ 𝒜 ∨ v ∉ 𝒜 ∧ insert a v ∈ 𝒜 hsv : s ∩ v = insert a (s ∩ u) ⊢ ∃ u_1 ∈ 𝒜, s ∩ u_1 = s ∩ u
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv
obtain hv | hv := hv
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv
Mathlib.Combinatorics.SetFamily.Shatter.153_0.9SFN902fumqg7uv
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s
Mathlib_Combinatorics_SetFamily_Shatter
case pos.intro.intro.inl α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s t : Finset α a : α n : ℕ hs : Shatters (𝓓 a 𝒜) s u : Finset α ht : s ∩ u ⊆ s hu : u ∉ 𝒜 ∧ insert a u ∈ 𝒜 ha : a ∈ s v : Finset α hsv : s ∩ v = insert a (s ∩ u) hv : v ∈ 𝒜 ∧ erase v a ∈ 𝒜 ⊢ ∃ u_1 ∈ 𝒜, s ∩ u_1 = s ∩ u
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv ·
refine ⟨erase v a, hv.2, ?_⟩
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv ·
Mathlib.Combinatorics.SetFamily.Shatter.153_0.9SFN902fumqg7uv
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s
Mathlib_Combinatorics_SetFamily_Shatter
case pos.intro.intro.inl α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s t : Finset α a : α n : ℕ hs : Shatters (𝓓 a 𝒜) s u : Finset α ht : s ∩ u ⊆ s hu : u ∉ 𝒜 ∧ insert a u ∈ 𝒜 ha : a ∈ s v : Finset α hsv : s ∩ v = insert a (s ∩ u) hv : v ∈ 𝒜 ∧ erase v a ∈ 𝒜 ⊢ s ∩ erase v a = s ∩ u
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩
rw [inter_erase, hsv, erase_insert]
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩
Mathlib.Combinatorics.SetFamily.Shatter.153_0.9SFN902fumqg7uv
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s
Mathlib_Combinatorics_SetFamily_Shatter
case pos.intro.intro.inl α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s t : Finset α a : α n : ℕ hs : Shatters (𝓓 a 𝒜) s u : Finset α ht : s ∩ u ⊆ s hu : u ∉ 𝒜 ∧ insert a u ∈ 𝒜 ha : a ∈ s v : Finset α hsv : s ∩ v = insert a (s ∩ u) hv : v ∈ 𝒜 ∧ erase v a ∈ 𝒜 ⊢ a ∉ s ∩ u
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩ rw [inter_erase, hsv, erase_insert]
rintro ha
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩ rw [inter_erase, hsv, erase_insert]
Mathlib.Combinatorics.SetFamily.Shatter.153_0.9SFN902fumqg7uv
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s
Mathlib_Combinatorics_SetFamily_Shatter
case pos.intro.intro.inl α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s t : Finset α a : α n : ℕ hs : Shatters (𝓓 a 𝒜) s u : Finset α ht : s ∩ u ⊆ s hu : u ∉ 𝒜 ∧ insert a u ∈ 𝒜 ha✝ : a ∈ s v : Finset α hsv : s ∩ v = insert a (s ∩ u) hv : v ∈ 𝒜 ∧ erase v a ∈ 𝒜 ha : a ∈ s ∩ u ⊢ False
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩ rw [inter_erase, hsv, erase_insert] rintro ha
rw [insert_eq_self.2 (mem_inter.1 ha).2] at hu
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩ rw [inter_erase, hsv, erase_insert] rintro ha
Mathlib.Combinatorics.SetFamily.Shatter.153_0.9SFN902fumqg7uv
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s
Mathlib_Combinatorics_SetFamily_Shatter
case pos.intro.intro.inl α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s t : Finset α a : α n : ℕ hs : Shatters (𝓓 a 𝒜) s u : Finset α ht : s ∩ u ⊆ s hu : u ∉ 𝒜 ∧ u ∈ 𝒜 ha✝ : a ∈ s v : Finset α hsv : s ∩ v = insert a (s ∩ u) hv : v ∈ 𝒜 ∧ erase v a ∈ 𝒜 ha : a ∈ s ∩ u ⊢ False
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩ rw [inter_erase, hsv, erase_insert] rintro ha rw [insert_eq_self.2 (mem_inter.1 ha).2] at hu
exact hu.1 hu.2
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩ rw [inter_erase, hsv, erase_insert] rintro ha rw [insert_eq_self.2 (mem_inter.1 ha).2] at hu
Mathlib.Combinatorics.SetFamily.Shatter.153_0.9SFN902fumqg7uv
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s
Mathlib_Combinatorics_SetFamily_Shatter
case pos.intro.intro.inr α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s t : Finset α a : α n : ℕ hs : Shatters (𝓓 a 𝒜) s u : Finset α ht : s ∩ u ⊆ s hu : u ∉ 𝒜 ∧ insert a u ∈ 𝒜 ha : a ∈ s v : Finset α hsv : s ∩ v = insert a (s ∩ u) hv : v ∉ 𝒜 ∧ insert a v ∈ 𝒜 ⊢ ∃ u_1 ∈ 𝒜, s ∩ u_1 = s ∩ u
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩ rw [inter_erase, hsv, erase_insert] rintro ha rw [insert_eq_self.2 (mem_inter.1 ha).2] at hu exact hu.1 hu.2
rw [insert_eq_self.2 <| inter_subset_right s _ ?_] at hv
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩ rw [inter_erase, hsv, erase_insert] rintro ha rw [insert_eq_self.2 (mem_inter.1 ha).2] at hu exact hu.1 hu.2
Mathlib.Combinatorics.SetFamily.Shatter.153_0.9SFN902fumqg7uv
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s
Mathlib_Combinatorics_SetFamily_Shatter
case pos.intro.intro.inr α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s t : Finset α a : α n : ℕ hs : Shatters (𝓓 a 𝒜) s u : Finset α ht : s ∩ u ⊆ s hu : u ∉ 𝒜 ∧ insert a u ∈ 𝒜 ha : a ∈ s v : Finset α hsv : s ∩ v = insert a (s ∩ u) hv : v ∉ 𝒜 ∧ v ∈ 𝒜 ⊢ ∃ u_1 ∈ 𝒜, s ∩ u_1 = s ∩ u α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s t : Finset α a : α n : ℕ hs : Shatters (𝓓 a 𝒜) s u : Finset α ht : s ∩ u ⊆ s hu : u ∉ 𝒜 ∧ insert a u ∈ 𝒜 ha : a ∈ s v : Finset α hsv : s ∩ v = insert a (s ∩ u) hv : v ∉ 𝒜 ∧ insert a v ∈ 𝒜 ⊢ a ∈ s ∩ v
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩ rw [inter_erase, hsv, erase_insert] rintro ha rw [insert_eq_self.2 (mem_inter.1 ha).2] at hu exact hu.1 hu.2 rw [insert_eq_self.2 <| inter_subset_right s _ ?_] at hv
cases hv.1 hv.2
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩ rw [inter_erase, hsv, erase_insert] rintro ha rw [insert_eq_self.2 (mem_inter.1 ha).2] at hu exact hu.1 hu.2 rw [insert_eq_self.2 <| inter_subset_right s _ ?_] at hv
Mathlib.Combinatorics.SetFamily.Shatter.153_0.9SFN902fumqg7uv
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s
Mathlib_Combinatorics_SetFamily_Shatter
α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s t : Finset α a : α n : ℕ hs : Shatters (𝓓 a 𝒜) s u : Finset α ht : s ∩ u ⊆ s hu : u ∉ 𝒜 ∧ insert a u ∈ 𝒜 ha : a ∈ s v : Finset α hsv : s ∩ v = insert a (s ∩ u) hv : v ∉ 𝒜 ∧ insert a v ∈ 𝒜 ⊢ a ∈ s ∩ v
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩ rw [inter_erase, hsv, erase_insert] rintro ha rw [insert_eq_self.2 (mem_inter.1 ha).2] at hu exact hu.1 hu.2 rw [insert_eq_self.2 <| inter_subset_right s _ ?_] at hv cases hv.1 hv.2
rw [hsv]
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩ rw [inter_erase, hsv, erase_insert] rintro ha rw [insert_eq_self.2 (mem_inter.1 ha).2] at hu exact hu.1 hu.2 rw [insert_eq_self.2 <| inter_subset_right s _ ?_] at hv cases hv.1 hv.2
Mathlib.Combinatorics.SetFamily.Shatter.153_0.9SFN902fumqg7uv
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s
Mathlib_Combinatorics_SetFamily_Shatter
α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s t : Finset α a : α n : ℕ hs : Shatters (𝓓 a 𝒜) s u : Finset α ht : s ∩ u ⊆ s hu : u ∉ 𝒜 ∧ insert a u ∈ 𝒜 ha : a ∈ s v : Finset α hsv : s ∩ v = insert a (s ∩ u) hv : v ∉ 𝒜 ∧ insert a v ∈ 𝒜 ⊢ a ∈ insert a (s ∩ u)
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩ rw [inter_erase, hsv, erase_insert] rintro ha rw [insert_eq_self.2 (mem_inter.1 ha).2] at hu exact hu.1 hu.2 rw [insert_eq_self.2 <| inter_subset_right s _ ?_] at hv cases hv.1 hv.2 rw [hsv]
exact mem_insert_self _ _
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩ rw [inter_erase, hsv, erase_insert] rintro ha rw [insert_eq_self.2 (mem_inter.1 ha).2] at hu exact hu.1 hu.2 rw [insert_eq_self.2 <| inter_subset_right s _ ?_] at hv cases hv.1 hv.2 rw [hsv]
Mathlib.Combinatorics.SetFamily.Shatter.153_0.9SFN902fumqg7uv
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s
Mathlib_Combinatorics_SetFamily_Shatter
case neg α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s t : Finset α a : α n : ℕ hs : Shatters (𝓓 a 𝒜) s u : Finset α ht : s ∩ u ⊆ s hu : u ∉ 𝒜 ∧ insert a u ∈ 𝒜 ha : a ∉ s ⊢ ∃ u_1 ∈ 𝒜, s ∩ u_1 = s ∩ u
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩ rw [inter_erase, hsv, erase_insert] rintro ha rw [insert_eq_self.2 (mem_inter.1 ha).2] at hu exact hu.1 hu.2 rw [insert_eq_self.2 <| inter_subset_right s _ ?_] at hv cases hv.1 hv.2 rw [hsv] exact mem_insert_self _ _ ·
refine ⟨insert a u, hu.2, ?_⟩
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩ rw [inter_erase, hsv, erase_insert] rintro ha rw [insert_eq_self.2 (mem_inter.1 ha).2] at hu exact hu.1 hu.2 rw [insert_eq_self.2 <| inter_subset_right s _ ?_] at hv cases hv.1 hv.2 rw [hsv] exact mem_insert_self _ _ ·
Mathlib.Combinatorics.SetFamily.Shatter.153_0.9SFN902fumqg7uv
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s
Mathlib_Combinatorics_SetFamily_Shatter
case neg α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s t : Finset α a : α n : ℕ hs : Shatters (𝓓 a 𝒜) s u : Finset α ht : s ∩ u ⊆ s hu : u ∉ 𝒜 ∧ insert a u ∈ 𝒜 ha : a ∉ s ⊢ s ∩ insert a u = s ∩ u
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩ rw [inter_erase, hsv, erase_insert] rintro ha rw [insert_eq_self.2 (mem_inter.1 ha).2] at hu exact hu.1 hu.2 rw [insert_eq_self.2 <| inter_subset_right s _ ?_] at hv cases hv.1 hv.2 rw [hsv] exact mem_insert_self _ _ · refine ⟨insert a u, hu.2, ?_⟩
rw [inter_insert_of_not_mem ha]
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩ rw [inter_erase, hsv, erase_insert] rintro ha rw [insert_eq_self.2 (mem_inter.1 ha).2] at hu exact hu.1 hu.2 rw [insert_eq_self.2 <| inter_subset_right s _ ?_] at hv cases hv.1 hv.2 rw [hsv] exact mem_insert_self _ _ · refine ⟨insert a u, hu.2, ?_⟩
Mathlib.Combinatorics.SetFamily.Shatter.153_0.9SFN902fumqg7uv
lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s
Mathlib_Combinatorics_SetFamily_Shatter
α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s t : Finset α a✝ : α n : ℕ a : α 𝒜 : Finset (Finset α) ⊢ shatterer (𝓓 a 𝒜) ⊆ shatterer 𝒜
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩ rw [inter_erase, hsv, erase_insert] rintro ha rw [insert_eq_self.2 (mem_inter.1 ha).2] at hu exact hu.1 hu.2 rw [insert_eq_self.2 <| inter_subset_right s _ ?_] at hv cases hv.1 hv.2 rw [hsv] exact mem_insert_self _ _ · refine ⟨insert a u, hu.2, ?_⟩ rw [inter_insert_of_not_mem ha] lemma shatterer_compress_subset_shatterer (a : α) (𝒜 : Finset (Finset α)) : (𝓓 a 𝒜).shatterer ⊆ 𝒜.shatterer := by
simp only [subset_iff, mem_shatterer]
lemma shatterer_compress_subset_shatterer (a : α) (𝒜 : Finset (Finset α)) : (𝓓 a 𝒜).shatterer ⊆ 𝒜.shatterer := by
Mathlib.Combinatorics.SetFamily.Shatter.175_0.9SFN902fumqg7uv
lemma shatterer_compress_subset_shatterer (a : α) (𝒜 : Finset (Finset α)) : (𝓓 a 𝒜).shatterer ⊆ 𝒜.shatterer
Mathlib_Combinatorics_SetFamily_Shatter
α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s t : Finset α a✝ : α n : ℕ a : α 𝒜 : Finset (Finset α) ⊢ ∀ ⦃x : Finset α⦄, Shatters (𝓓 a 𝒜) x → Shatters 𝒜 x
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩ rw [inter_erase, hsv, erase_insert] rintro ha rw [insert_eq_self.2 (mem_inter.1 ha).2] at hu exact hu.1 hu.2 rw [insert_eq_self.2 <| inter_subset_right s _ ?_] at hv cases hv.1 hv.2 rw [hsv] exact mem_insert_self _ _ · refine ⟨insert a u, hu.2, ?_⟩ rw [inter_insert_of_not_mem ha] lemma shatterer_compress_subset_shatterer (a : α) (𝒜 : Finset (Finset α)) : (𝓓 a 𝒜).shatterer ⊆ 𝒜.shatterer := by simp only [subset_iff, mem_shatterer];
exact fun s hs ↦ hs.of_compression
lemma shatterer_compress_subset_shatterer (a : α) (𝒜 : Finset (Finset α)) : (𝓓 a 𝒜).shatterer ⊆ 𝒜.shatterer := by simp only [subset_iff, mem_shatterer];
Mathlib.Combinatorics.SetFamily.Shatter.175_0.9SFN902fumqg7uv
lemma shatterer_compress_subset_shatterer (a : α) (𝒜 : Finset (Finset α)) : (𝓓 a 𝒜).shatterer ⊆ 𝒜.shatterer
Mathlib_Combinatorics_SetFamily_Shatter
α : Type u_1 inst✝¹ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s t : Finset α a : α n : ℕ inst✝ : Fintype α ⊢ card (shatterer 𝒜) ≤ ∑ k in Iic (vcDim 𝒜), Nat.choose (Fintype.card α) k
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩ rw [inter_erase, hsv, erase_insert] rintro ha rw [insert_eq_self.2 (mem_inter.1 ha).2] at hu exact hu.1 hu.2 rw [insert_eq_self.2 <| inter_subset_right s _ ?_] at hv cases hv.1 hv.2 rw [hsv] exact mem_insert_self _ _ · refine ⟨insert a u, hu.2, ?_⟩ rw [inter_insert_of_not_mem ha] lemma shatterer_compress_subset_shatterer (a : α) (𝒜 : Finset (Finset α)) : (𝓓 a 𝒜).shatterer ⊆ 𝒜.shatterer := by simp only [subset_iff, mem_shatterer]; exact fun s hs ↦ hs.of_compression /-! ### Vapnik-Chervonenkis dimension -/ /-- The Vapnik-Chervonenkis dimension of a set family is the maximal size of a set it shatters. -/ def vcDim (𝒜 : Finset (Finset α)) : ℕ := 𝒜.shatterer.sup card lemma Shatters.card_le_vcDim (hs : 𝒜.Shatters s) : s.card ≤ 𝒜.vcDim := le_sup <| mem_shatterer.2 hs /-- Down-compressing decreases the VC-dimension. -/ lemma vcDim_compress_le (a : α) (𝒜 : Finset (Finset α)) : (𝓓 a 𝒜).vcDim ≤ 𝒜.vcDim := sup_mono <| shatterer_compress_subset_shatterer _ _ /-- The **Sauer-Shelah lemma**. -/ lemma card_shatterer_le_sum_vcDim [Fintype α] : 𝒜.shatterer.card ≤ ∑ k in Iic 𝒜.vcDim, (Fintype.card α).choose k := by
simp_rw [← card_univ, ← card_powersetCard]
/-- The **Sauer-Shelah lemma**. -/ lemma card_shatterer_le_sum_vcDim [Fintype α] : 𝒜.shatterer.card ≤ ∑ k in Iic 𝒜.vcDim, (Fintype.card α).choose k := by
Mathlib.Combinatorics.SetFamily.Shatter.190_0.9SFN902fumqg7uv
/-- The **Sauer-Shelah lemma**. -/ lemma card_shatterer_le_sum_vcDim [Fintype α] : 𝒜.shatterer.card ≤ ∑ k in Iic 𝒜.vcDim, (Fintype.card α).choose k
Mathlib_Combinatorics_SetFamily_Shatter
α : Type u_1 inst✝¹ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s t : Finset α a : α n : ℕ inst✝ : Fintype α ⊢ card (shatterer 𝒜) ≤ ∑ x in Iic (vcDim 𝒜), card (powersetCard x univ)
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩ rw [inter_erase, hsv, erase_insert] rintro ha rw [insert_eq_self.2 (mem_inter.1 ha).2] at hu exact hu.1 hu.2 rw [insert_eq_self.2 <| inter_subset_right s _ ?_] at hv cases hv.1 hv.2 rw [hsv] exact mem_insert_self _ _ · refine ⟨insert a u, hu.2, ?_⟩ rw [inter_insert_of_not_mem ha] lemma shatterer_compress_subset_shatterer (a : α) (𝒜 : Finset (Finset α)) : (𝓓 a 𝒜).shatterer ⊆ 𝒜.shatterer := by simp only [subset_iff, mem_shatterer]; exact fun s hs ↦ hs.of_compression /-! ### Vapnik-Chervonenkis dimension -/ /-- The Vapnik-Chervonenkis dimension of a set family is the maximal size of a set it shatters. -/ def vcDim (𝒜 : Finset (Finset α)) : ℕ := 𝒜.shatterer.sup card lemma Shatters.card_le_vcDim (hs : 𝒜.Shatters s) : s.card ≤ 𝒜.vcDim := le_sup <| mem_shatterer.2 hs /-- Down-compressing decreases the VC-dimension. -/ lemma vcDim_compress_le (a : α) (𝒜 : Finset (Finset α)) : (𝓓 a 𝒜).vcDim ≤ 𝒜.vcDim := sup_mono <| shatterer_compress_subset_shatterer _ _ /-- The **Sauer-Shelah lemma**. -/ lemma card_shatterer_le_sum_vcDim [Fintype α] : 𝒜.shatterer.card ≤ ∑ k in Iic 𝒜.vcDim, (Fintype.card α).choose k := by simp_rw [← card_univ, ← card_powersetCard]
refine (card_le_of_subset <| fun s hs ↦ mem_biUnion.2 ⟨card s, ?_⟩).trans card_biUnion_le
/-- The **Sauer-Shelah lemma**. -/ lemma card_shatterer_le_sum_vcDim [Fintype α] : 𝒜.shatterer.card ≤ ∑ k in Iic 𝒜.vcDim, (Fintype.card α).choose k := by simp_rw [← card_univ, ← card_powersetCard]
Mathlib.Combinatorics.SetFamily.Shatter.190_0.9SFN902fumqg7uv
/-- The **Sauer-Shelah lemma**. -/ lemma card_shatterer_le_sum_vcDim [Fintype α] : 𝒜.shatterer.card ≤ ∑ k in Iic 𝒜.vcDim, (Fintype.card α).choose k
Mathlib_Combinatorics_SetFamily_Shatter
α : Type u_1 inst✝¹ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s✝ t : Finset α a : α n : ℕ inst✝ : Fintype α s : Finset α hs : s ∈ shatterer 𝒜 ⊢ card s ∈ Iic (vcDim 𝒜) ∧ s ∈ powersetCard (card s) univ
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import Mathlib.Data.Finset.Sort import Mathlib.Data.Nat.Interval import Mathlib.Order.UpperLower.Basic import Mathlib.Combinatorics.SetFamily.Compression.Down /-! # Shattering families This file defines the shattering property and VC-dimension of set families. ## Main declarations * `Finset.Shatters`: The shattering property. * `Finset.shatterer`: The set family of sets shattered by a set family. * `Finset.vcDim`: The Vapnik-Chervonenkis dimension. ## TODO * Order-shattering * Strong shattering -/ open scoped BigOperators FinsetFamily namespace Finset variable {α : Type*} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s t : Finset α} {a : α} {n : ℕ} /-- A set family `𝒜` shatters a set `s` if all subsets of `s` can be obtained as the intersection of `s` and some element of the set family, and we denote this `𝒜.Shatters s`. We also say that `s` is *traced* by `𝒜`. -/ def Shatters (𝒜 : Finset (Finset α)) (s : Finset α) : Prop := ∀ ⦃t⦄, t ⊆ s → ∃ u ∈ 𝒜, s ∩ u = t instance : DecidablePred 𝒜.Shatters := fun _s ↦ decidableForallOfDecidableSubsets lemma Shatters.exists_inter_eq_singleton (hs : Shatters 𝒜 s) (ha : a ∈ s) : ∃ t ∈ 𝒜, s ∩ t = {a} := hs <| singleton_subset_iff.2 ha lemma Shatters.mono_left (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) : ℬ.Shatters s := fun _t ht ↦ let ⟨u, hu, hut⟩ := h𝒜 ht; ⟨u, h hu, hut⟩ lemma Shatters.mono_right (h : t ⊆ s) (hs : 𝒜.Shatters s) : 𝒜.Shatters t := fun u hu ↦ by obtain ⟨v, hv, rfl⟩ := hs (hu.trans h); exact ⟨v, hv, inf_congr_right hu <| inf_le_of_left_le h⟩ lemma Shatters.exists_superset (h : 𝒜.Shatters s) : ∃ t ∈ 𝒜, s ⊆ t := let ⟨t, ht, hst⟩ := h Subset.rfl; ⟨t, ht, inter_eq_left.1 hst⟩ lemma shatters_of_forall_subset (h : ∀ t, t ⊆ s → t ∈ 𝒜) : 𝒜.Shatters s := fun t ht ↦ ⟨t, h _ ht, inter_eq_right.2 ht⟩ protected lemma Shatters.nonempty (h : 𝒜.Shatters s) : 𝒜.Nonempty := let ⟨t, ht, _⟩ := h Subset.rfl; ⟨t, ht⟩ @[simp] lemma shatters_empty : 𝒜.Shatters ∅ ↔ 𝒜.Nonempty := ⟨Shatters.nonempty, fun ⟨s, hs⟩ t ht ↦ ⟨s, hs, by rwa [empty_inter, eq_comm, ← subset_empty]⟩⟩ protected lemma Shatters.subset_iff (h : 𝒜.Shatters s) : t ⊆ s ↔ ∃ u ∈ 𝒜, s ∩ u = t := ⟨fun ht ↦ h ht, by rintro ⟨u, _, rfl⟩; exact inter_subset_left _ _⟩ lemma shatters_iff : 𝒜.Shatters s ↔ 𝒜.image (fun t ↦ s ∩ t) = s.powerset := ⟨fun h ↦ by ext t; rw [mem_image, mem_powerset, h.subset_iff], fun h t ht ↦ by rwa [← mem_powerset, ← h, mem_image] at ht⟩ lemma univ_shatters [Fintype α] : univ.Shatters s := shatters_of_forall_subset <| fun _ _ ↦ mem_univ _ @[simp] lemma shatters_univ [Fintype α] : 𝒜.Shatters univ ↔ 𝒜 = univ := by rw [shatters_iff, powerset_univ]; simp_rw [univ_inter, image_id'] /-- The set family of sets that are shattered by `𝒜`. -/ def shatterer (𝒜 : Finset (Finset α)) : Finset (Finset α) := (𝒜.biUnion powerset).filter 𝒜.Shatters @[simp] lemma mem_shatterer : s ∈ 𝒜.shatterer ↔ 𝒜.Shatters s := by refine mem_filter.trans <| and_iff_right_of_imp <| fun h ↦ ?_ simp_rw [mem_biUnion, mem_powerset] exact h.exists_superset lemma shatterer_mono (h : 𝒜 ⊆ ℬ) : 𝒜.shatterer ⊆ ℬ.shatterer := fun _ ↦ by simpa using Shatters.mono_left h lemma subset_shatterer (h : IsLowerSet (𝒜 : Set (Finset α))) : 𝒜 ⊆ 𝒜.shatterer := fun _s hs ↦ mem_shatterer.2 <| fun t ht ↦ ⟨t, h ht hs, inter_eq_right.2 ht⟩ @[simp] lemma isLowerSet_shatterer (𝒜 : Finset (Finset α)) : IsLowerSet (𝒜.shatterer : Set (Finset α)) := fun s t ↦ by simpa using Shatters.mono_right @[simp] lemma shatterer_eq : 𝒜.shatterer = 𝒜 ↔ IsLowerSet (𝒜 : Set (Finset α)) := by refine ⟨fun h ↦ ?_, fun h ↦ Subset.antisymm (fun s hs ↦ ?_) <| subset_shatterer h⟩ · rw [← h] exact isLowerSet_shatterer _ · obtain ⟨t, ht, hst⟩ := (mem_shatterer.1 hs).exists_superset exact h hst ht @[simp] lemma shatterer_idem : 𝒜.shatterer.shatterer = 𝒜.shatterer := by simp @[simp] lemma shatters_shatterer : 𝒜.shatterer.Shatters s ↔ 𝒜.Shatters s := by simp_rw [← mem_shatterer, shatterer_idem] protected alias ⟨_, Shatters.shatterer⟩ := shatters_shatterer private lemma aux (h : ∀ t ∈ 𝒜, a ∉ t) (ht : 𝒜.Shatters t) : a ∉ t := by obtain ⟨u, hu, htu⟩ := ht.exists_superset; exact not_mem_mono htu <| h u hu /-- Pajor's variant of the **Sauer-Shelah lemma**. -/ lemma card_le_card_shatterer (𝒜 : Finset (Finset α)) : 𝒜.card ≤ 𝒜.shatterer.card := by refine memberFamily_induction_on 𝒜 ?_ ?_ ?_ · simp · rfl intros a 𝒜 ih₀ ih₁ set ℬ : Finset (Finset α) := ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).image (insert a) have hℬ : ℬ.card = ((memberSubfamily a 𝒜).shatterer ∩ (nonMemberSubfamily a 𝒜).shatterer).card · refine card_image_of_injOn <| insert_erase_invOn.2.injOn.mono ?_ simp only [coe_inter, Set.subset_def, Set.mem_inter_iff, mem_coe, Set.mem_setOf_eq, and_imp, mem_shatterer] exact fun s _ ↦ aux (fun t ht ↦ (mem_filter.1 ht).2) rw [← card_memberSubfamily_add_card_nonMemberSubfamily a] refine (add_le_add ih₁ ih₀).trans ?_ rw [← card_union_add_card_inter, ← hℬ, ← card_disjoint_union] swap · simp only [disjoint_left, mem_union, mem_shatterer, mem_image, not_exists, not_and] rintro _ (hs | hs) s - rfl · exact aux (fun t ht ↦ (mem_memberSubfamily.1 ht).2) hs <| mem_insert_self _ _ · exact aux (fun t ht ↦ (mem_nonMemberSubfamily.1 ht).2) hs <| mem_insert_self _ _ refine card_mono <| union_subset (union_subset ?_ <| shatterer_mono <| filter_subset _ _) ?_ · simp only [subset_iff, mem_shatterer] rintro s hs t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [mem_memberSubfamily] at hu refine ⟨insert a u, hu.1, inter_insert_of_not_mem fun ha ↦ ?_⟩ obtain ⟨v, hv, hsv⟩ := hs.exists_inter_eq_singleton ha rw [mem_memberSubfamily] at hv rw [← singleton_subset_iff (a := a), ← hsv] at hv exact hv.2 <| inter_subset_right _ _ · refine forall_image.2 fun s hs ↦ mem_shatterer.2 fun t ht ↦ ?_ simp only [mem_inter, mem_shatterer] at hs rw [subset_insert_iff] at ht by_cases ha : a ∈ t · obtain ⟨u, hu, hsu⟩ := hs.1 ht rw [mem_memberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rw [← insert_inter_distrib, hsu, insert_erase ha] · obtain ⟨u, hu, hsu⟩ := hs.2 ht rw [mem_nonMemberSubfamily] at hu refine ⟨_, hu.1, ?_⟩ rwa [insert_inter_of_not_mem hu.2, hsu, erase_eq_self] lemma Shatters.of_compression (hs : (𝓓 a 𝒜).Shatters s) : 𝒜.Shatters s := by intros t ht obtain ⟨u, hu, rfl⟩ := hs ht rw [Down.mem_compression] at hu obtain hu | hu := hu · exact ⟨u, hu.1, rfl⟩ by_cases ha : a ∈ s · obtain ⟨v, hv, hsv⟩ := hs <| insert_subset ha ht rw [Down.mem_compression] at hv obtain hv | hv := hv · refine ⟨erase v a, hv.2, ?_⟩ rw [inter_erase, hsv, erase_insert] rintro ha rw [insert_eq_self.2 (mem_inter.1 ha).2] at hu exact hu.1 hu.2 rw [insert_eq_self.2 <| inter_subset_right s _ ?_] at hv cases hv.1 hv.2 rw [hsv] exact mem_insert_self _ _ · refine ⟨insert a u, hu.2, ?_⟩ rw [inter_insert_of_not_mem ha] lemma shatterer_compress_subset_shatterer (a : α) (𝒜 : Finset (Finset α)) : (𝓓 a 𝒜).shatterer ⊆ 𝒜.shatterer := by simp only [subset_iff, mem_shatterer]; exact fun s hs ↦ hs.of_compression /-! ### Vapnik-Chervonenkis dimension -/ /-- The Vapnik-Chervonenkis dimension of a set family is the maximal size of a set it shatters. -/ def vcDim (𝒜 : Finset (Finset α)) : ℕ := 𝒜.shatterer.sup card lemma Shatters.card_le_vcDim (hs : 𝒜.Shatters s) : s.card ≤ 𝒜.vcDim := le_sup <| mem_shatterer.2 hs /-- Down-compressing decreases the VC-dimension. -/ lemma vcDim_compress_le (a : α) (𝒜 : Finset (Finset α)) : (𝓓 a 𝒜).vcDim ≤ 𝒜.vcDim := sup_mono <| shatterer_compress_subset_shatterer _ _ /-- The **Sauer-Shelah lemma**. -/ lemma card_shatterer_le_sum_vcDim [Fintype α] : 𝒜.shatterer.card ≤ ∑ k in Iic 𝒜.vcDim, (Fintype.card α).choose k := by simp_rw [← card_univ, ← card_powersetCard] refine (card_le_of_subset <| fun s hs ↦ mem_biUnion.2 ⟨card s, ?_⟩).trans card_biUnion_le
exact ⟨mem_Iic.2 (mem_shatterer.1 hs).card_le_vcDim, mem_powersetCard_univ.2 rfl⟩
/-- The **Sauer-Shelah lemma**. -/ lemma card_shatterer_le_sum_vcDim [Fintype α] : 𝒜.shatterer.card ≤ ∑ k in Iic 𝒜.vcDim, (Fintype.card α).choose k := by simp_rw [← card_univ, ← card_powersetCard] refine (card_le_of_subset <| fun s hs ↦ mem_biUnion.2 ⟨card s, ?_⟩).trans card_biUnion_le
Mathlib.Combinatorics.SetFamily.Shatter.190_0.9SFN902fumqg7uv
/-- The **Sauer-Shelah lemma**. -/ lemma card_shatterer_le_sum_vcDim [Fintype α] : 𝒜.shatterer.card ≤ ∑ k in Iic 𝒜.vcDim, (Fintype.card α).choose k
Mathlib_Combinatorics_SetFamily_Shatter
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 x : γ s : (i : ι) → κ i → Set γ ⊢ x ∈ ⋃ i, ⋃ j, s i j ↔ ∃ i j, x ∈ s i j
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by
simp_rw [mem_iUnion]
theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by
Mathlib.Data.Set.Lattice.212_0.5mONj49h3SYSDwc
theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 x : γ s : (i : ι) → κ i → Set γ ⊢ x ∈ ⋂ i, ⋂ j, s i j ↔ ∀ (i : ι) (j : κ i), x ∈ s i j
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by
simp_rw [mem_iInter]
theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by
Mathlib.Data.Set.Lattice.217_0.5mONj49h3SYSDwc
theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 src✝ : BooleanAlgebra (Set α) := instBooleanAlgebraSet ⊢ ∀ {ι : Type u_1} {κ : ι → Type u_1} (f : (a : ι) → κ a → Set α), ⨅ a, ⨆ b, f a b = ⨆ g, ⨅ a, f a (g a)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by
intros
instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by
Mathlib.Data.Set.Lattice.241_0.5mONj49h3SYSDwc
instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α)
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 src✝ : BooleanAlgebra (Set α) := instBooleanAlgebraSet ι✝ : Type u_1 κ✝ : ι✝ → Type u_1 f✝ : (a : ι✝) → κ✝ a → Set α ⊢ ⨅ a, ⨆ b, f✝ a b = ⨆ g, ⨅ a, f✝ a (g a)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros;
ext
instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros;
Mathlib.Data.Set.Lattice.241_0.5mONj49h3SYSDwc
instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α)
Mathlib_Data_Set_Lattice
case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 src✝ : BooleanAlgebra (Set α) := instBooleanAlgebraSet ι✝ : Type u_1 κ✝ : ι✝ → Type u_1 f✝ : (a : ι✝) → κ✝ a → Set α x✝ : α ⊢ x✝ ∈ ⨅ a, ⨆ b, f✝ a b ↔ x✝ ∈ ⨆ g, ⨅ a, f✝ a (g a)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext;
simp [Classical.skolem]
instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext;
Mathlib.Data.Set.Lattice.241_0.5mONj49h3SYSDwc
instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α)
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 f : α → β s : Set α ⊢ kernImage f sᶜ = (f '' s)ᶜ
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by
rw [kernImage_eq_compl, compl_compl]
lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by
Mathlib.Data.Set.Lattice.282_0.5mONj49h3SYSDwc
lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 f : α → β ⊢ kernImage f ∅ = (range f)ᶜ
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by
rw [kernImage_eq_compl, compl_empty, image_univ]
lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by
Mathlib.Data.Set.Lattice.285_0.5mONj49h3SYSDwc
lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 f : α → β s : Set β ⊢ kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by
rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm]
lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by
Mathlib.Data.Set.Lattice.288_0.5mONj49h3SYSDwc
lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 f : α → β s : Set α ⊢ (range f)ᶜ ⊆ kernImage f s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by
rw [← kernImage_empty]
lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by
Mathlib.Data.Set.Lattice.292_0.5mONj49h3SYSDwc
lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 f : α → β s : Set α ⊢ kernImage f ∅ ⊆ kernImage f s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty]
exact kernImage_mono (empty_subset _)
lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty]
Mathlib.Data.Set.Lattice.292_0.5mONj49h3SYSDwc
lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 f : α → β s : Set α t : Set β ⊢ kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by
rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl]
lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by
Mathlib.Data.Set.Lattice.296_0.5mONj49h3SYSDwc
lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 f : α → β s : Set α t : Set β ⊢ kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by
rw [union_comm, kernImage_union_preimage, union_comm]
lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by
Mathlib.Data.Set.Lattice.301_0.5mONj49h3SYSDwc
lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 ⊢ ∀ (a : Set α), a ≤ ⊤
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by
simp
instance : OrderTop (Set α) where top := univ le_top := by
Mathlib.Data.Set.Lattice.310_0.5mONj49h3SYSDwc
instance : OrderTop (Set α) where top
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι✝ → Sort u_7 κ₁ : ι✝ → Sort u_8 κ₂ : ι✝ → Sort u_9 κ' : ι' → Sort u_10 ι : Type u_11 t : Set ι s : ι → Set β w : ⋃ i ∈ t, s i = ⊤ x : β ⊢ ∃ i ∈ t, x ∈ s i
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by
have p : x ∈ ⊤ := Set.mem_univ x
theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by
Mathlib.Data.Set.Lattice.360_0.5mONj49h3SYSDwc
theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι✝ → Sort u_7 κ₁ : ι✝ → Sort u_8 κ₂ : ι✝ → Sort u_9 κ' : ι' → Sort u_10 ι : Type u_11 t : Set ι s : ι → Set β w : ⋃ i ∈ t, s i = ⊤ x : β p : x ∈ ⊤ ⊢ ∃ i ∈ t, x ∈ s i
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x
rw [← w, Set.mem_iUnion] at p
theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x
Mathlib.Data.Set.Lattice.360_0.5mONj49h3SYSDwc
theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι✝ → Sort u_7 κ₁ : ι✝ → Sort u_8 κ₂ : ι✝ → Sort u_9 κ' : ι' → Sort u_10 ι : Type u_11 t : Set ι s : ι → Set β w : ⋃ i ∈ t, s i = ⊤ x : β p : ∃ i, x ∈ ⋃ (_ : i ∈ t), s i ⊢ ∃ i ∈ t, x ∈ s i
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p
simpa using p
theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p
Mathlib.Data.Set.Lattice.360_0.5mONj49h3SYSDwc
theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι✝ → Sort u_7 κ₁ : ι✝ → Sort u_8 κ₂ : ι✝ → Sort u_9 κ' : ι' → Sort u_10 ι : Type u_11 t : Set ι s : ι → Set α H : Nonempty α w : ⋃ i ∈ t, s i = ⊤ ⊢ Set.Nonempty t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by
obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some
theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by
Mathlib.Data.Set.Lattice.367_0.5mONj49h3SYSDwc
theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty
Mathlib_Data_Set_Lattice
case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι✝ → Sort u_7 κ₁ : ι✝ → Sort u_8 κ₂ : ι✝ → Sort u_9 κ' : ι' → Sort u_10 ι : Type u_11 t : Set ι s : ι → Set α H : Nonempty α w : ⋃ i ∈ t, s i = ⊤ x : ι m : x ∈ t ⊢ Set.Nonempty t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some
exact ⟨x, m⟩
theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some
Mathlib.Data.Set.Lattice.367_0.5mONj49h3SYSDwc
theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 s : ι → Set α h_Union : Set.Nonempty (⋃ i, s i) ⊢ Nonempty ι
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by
obtain ⟨x, hx⟩ := h_Union
theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by
Mathlib.Data.Set.Lattice.373_0.5mONj49h3SYSDwc
theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι
Mathlib_Data_Set_Lattice
case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 s : ι → Set α x : α hx : x ∈ ⋃ i, s i ⊢ Nonempty ι
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union
exact ⟨Classical.choose $ mem_iUnion.mp hx⟩
theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union
Mathlib.Data.Set.Lattice.373_0.5mONj49h3SYSDwc
theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 s : ι → Set α inst✝ : Nonempty α h_Union : ⋃ i, s i = univ ⊢ Set.Nonempty (⋃ i, s i)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by
simpa only [h_Union] using univ_nonempty
theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by
Mathlib.Data.Set.Lattice.378_0.5mONj49h3SYSDwc
theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 s : (i : ι) → κ i → Set α t : Set α ⊢ ⋃ i, ⋃ j, s i j ⊆ t ↔ ∀ (i : ι) (j : κ i), s i j ⊆ t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by
simp_rw [iUnion_subset_iff]
theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by
Mathlib.Data.Set.Lattice.416_0.5mONj49h3SYSDwc
theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 s : Set α t : (i : ι) → κ i → Set α ⊢ s ⊆ ⋂ i, ⋂ j, t i j ↔ ∀ (i : ι) (j : κ i), s ⊆ t i j
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by
simp_rw [subset_iInter_iff]
theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by
Mathlib.Data.Set.Lattice.427_0.5mONj49h3SYSDwc
theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 P : ι → α → Prop ⊢ ⋃ i, {x | P i x} = {x | ∃ i, P i x}
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by
ext
theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by
Mathlib.Data.Set.Lattice.546_0.5mONj49h3SYSDwc
theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x }
Mathlib_Data_Set_Lattice
case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 P : ι → α → Prop x✝ : α ⊢ x✝ ∈ ⋃ i, {x | P i x} ↔ x✝ ∈ {x | ∃ i, P i x}
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext
exact mem_iUnion
theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext
Mathlib.Data.Set.Lattice.546_0.5mONj49h3SYSDwc
theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x }
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 P : ι → α → Prop ⊢ ⋂ i, {x | P i x} = {x | ∀ (i : ι), P i x}
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by
ext
theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by
Mathlib.Data.Set.Lattice.551_0.5mONj49h3SYSDwc
theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x }
Mathlib_Data_Set_Lattice
case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 P : ι → α → Prop x✝ : α ⊢ x✝ ∈ ⋂ i, {x | P i x} ↔ x✝ ∈ {x | ∀ (i : ι), P i x}
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext
exact mem_iInter
theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext
Mathlib.Data.Set.Lattice.551_0.5mONj49h3SYSDwc
theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x }
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 s : (i : ι) → κ i → Set α ⊢ (⋃ i, ⋃ j, s i j)ᶜ = ⋂ i, ⋂ j, (s i j)ᶜ
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by
simp_rw [compl_iUnion]
theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by
Mathlib.Data.Set.Lattice.610_0.5mONj49h3SYSDwc
theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 s : (i : ι) → κ i → Set α ⊢ (⋂ i, ⋂ j, s i j)ᶜ = ⋃ i, ⋃ j, (s i j)ᶜ
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by
simp_rw [compl_iInter]
theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by
Mathlib.Data.Set.Lattice.621_0.5mONj49h3SYSDwc
theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 s : ι → Set β ⊢ ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by
simp only [compl_iInter, compl_compl]
theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by
Mathlib.Data.Set.Lattice.626_0.5mONj49h3SYSDwc
theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 s : ι → Set β ⊢ ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by
simp only [compl_iUnion, compl_compl]
theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by
Mathlib.Data.Set.Lattice.631_0.5mONj49h3SYSDwc
theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 inst✝ : Nonempty ι s : Set β t : ι → Set β ⊢ s \ ⋃ i, t i = ⋂ i, s \ t i
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by
rw [diff_eq, compl_iUnion, inter_iInter]
theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by
Mathlib.Data.Set.Lattice.682_0.5mONj49h3SYSDwc
theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 inst✝ : Nonempty ι s : Set β t : ι → Set β ⊢ ⋂ i, s ∩ (t i)ᶜ = ⋂ i, s \ t i
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter];
rfl
theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter];
Mathlib.Data.Set.Lattice.682_0.5mONj49h3SYSDwc
theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 s : Set β t : ι → Set β ⊢ s \ ⋂ i, t i = ⋃ i, s \ t i
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by
rw [diff_eq, compl_iInter, inter_iUnion]
theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by
Mathlib.Data.Set.Lattice.686_0.5mONj49h3SYSDwc
theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 s : Set β t : ι → Set β ⊢ ⋃ i, s ∩ (t i)ᶜ = ⋃ i, s \ t i
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion];
rfl
theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion];
Mathlib.Data.Set.Lattice.686_0.5mONj49h3SYSDwc
theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 r : α → α → Prop f : ι → Set α hd : Directed (fun x x_1 => x ⊆ x_1) f h : ∀ (x : ι), DirectedOn r (f x) ⊢ DirectedOn r (⋃ x, f x)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by
simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp]
theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by
Mathlib.Data.Set.Lattice.690_0.5mONj49h3SYSDwc
theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x)
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 r : α → α → Prop f : ι → Set α hd : Directed (fun x x_1 => x ⊆ x_1) f h : ∀ (x : ι), DirectedOn r (f x) ⊢ ∀ (x : α) (x_1 : ι), x ∈ f x_1 → ∀ (y : α) (x_2 : ι), y ∈ f x_2 → ∃ z, (∃ i, z ∈ f i) ∧ r x z ∧ r y z
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp]
exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩
theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp]
Mathlib.Data.Set.Lattice.690_0.5mONj49h3SYSDwc
theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x)
Mathlib_Data_Set_Lattice
α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι✝ → Sort u_7 κ₁ : ι✝ → Sort u_8 κ₂ : ι✝ → Sort u_9 κ' : ι' → Sort u_10 ι : Type u_11 α : ι → Type u_12 v : (i : ι) → Set (α i) hv : Set.Nonempty (pi univ v) i : ι ⊢ (fun x => x i) '' ⋂ k, (fun x => x k) ⁻¹' v k = v i
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by
classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩ rw [@forall_update_iff ι α _ z i y fun i t => t ∈ v i] exact ⟨y_in, fun j _ => by simpa using hz j⟩
theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by
Mathlib.Data.Set.Lattice.762_0.5mONj49h3SYSDwc
theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i
Mathlib_Data_Set_Lattice
α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι✝ → Sort u_7 κ₁ : ι✝ → Sort u_8 κ₂ : ι✝ → Sort u_9 κ' : ι' → Sort u_10 ι : Type u_11 α : ι → Type u_12 v : (i : ι) → Set (α i) hv : Set.Nonempty (pi univ v) i : ι ⊢ (fun x => x i) '' ⋂ k, (fun x => x k) ⁻¹' v k = v i
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical
apply Subset.antisymm
theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical
Mathlib.Data.Set.Lattice.762_0.5mONj49h3SYSDwc
theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i
Mathlib_Data_Set_Lattice
case h₁ α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι✝ → Sort u_7 κ₁ : ι✝ → Sort u_8 κ₂ : ι✝ → Sort u_9 κ' : ι' → Sort u_10 ι : Type u_11 α : ι → Type u_12 v : (i : ι) → Set (α i) hv : Set.Nonempty (pi univ v) i : ι ⊢ (fun x => x i) '' ⋂ k, (fun x => x k) ⁻¹' v k ⊆ v i
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm ·
simp [iInter_subset]
theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm ·
Mathlib.Data.Set.Lattice.762_0.5mONj49h3SYSDwc
theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i
Mathlib_Data_Set_Lattice
case h₂ α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι✝ → Sort u_7 κ₁ : ι✝ → Sort u_8 κ₂ : ι✝ → Sort u_9 κ' : ι' → Sort u_10 ι : Type u_11 α : ι → Type u_12 v : (i : ι) → Set (α i) hv : Set.Nonempty (pi univ v) i : ι ⊢ v i ⊆ (fun x => x i) '' ⋂ k, (fun x => x k) ⁻¹' v k
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] ·
intro y y_in
theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] ·
Mathlib.Data.Set.Lattice.762_0.5mONj49h3SYSDwc
theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i
Mathlib_Data_Set_Lattice
case h₂ α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι✝ → Sort u_7 κ₁ : ι✝ → Sort u_8 κ₂ : ι✝ → Sort u_9 κ' : ι' → Sort u_10 ι : Type u_11 α : ι → Type u_12 v : (i : ι) → Set (α i) hv : Set.Nonempty (pi univ v) i : ι y : α i y_in : y ∈ v i ⊢ y ∈ (fun x => x i) '' ⋂ k, (fun x => x k) ⁻¹' v k
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in
simp only [mem_image, mem_iInter, mem_preimage]
theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in
Mathlib.Data.Set.Lattice.762_0.5mONj49h3SYSDwc
theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i
Mathlib_Data_Set_Lattice
case h₂ α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι✝ → Sort u_7 κ₁ : ι✝ → Sort u_8 κ₂ : ι✝ → Sort u_9 κ' : ι' → Sort u_10 ι : Type u_11 α : ι → Type u_12 v : (i : ι) → Set (α i) hv : Set.Nonempty (pi univ v) i : ι y : α i y_in : y ∈ v i ⊢ ∃ x, (∀ (i : ι), x i ∈ v i) ∧ x i = y
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage]
rcases hv with ⟨z, hz⟩
theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage]
Mathlib.Data.Set.Lattice.762_0.5mONj49h3SYSDwc
theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i
Mathlib_Data_Set_Lattice
case h₂.intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι✝ → Sort u_7 κ₁ : ι✝ → Sort u_8 κ₂ : ι✝ → Sort u_9 κ' : ι' → Sort u_10 ι : Type u_11 α : ι → Type u_12 v : (i : ι) → Set (α i) i : ι y : α i y_in : y ∈ v i z : (i : ι) → α i hz : z ∈ pi univ v ⊢ ∃ x, (∀ (i : ι), x i ∈ v i) ∧ x i = y
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩
refine' ⟨Function.update z i y, _, update_same i y z⟩
theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩
Mathlib.Data.Set.Lattice.762_0.5mONj49h3SYSDwc
theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i
Mathlib_Data_Set_Lattice
case h₂.intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι✝ → Sort u_7 κ₁ : ι✝ → Sort u_8 κ₂ : ι✝ → Sort u_9 κ' : ι' → Sort u_10 ι : Type u_11 α : ι → Type u_12 v : (i : ι) → Set (α i) i : ι y : α i y_in : y ∈ v i z : (i : ι) → α i hz : z ∈ pi univ v ⊢ ∀ (i_1 : ι), update z i y i_1 ∈ v i_1
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩
rw [@forall_update_iff ι α _ z i y fun i t => t ∈ v i]
theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩
Mathlib.Data.Set.Lattice.762_0.5mONj49h3SYSDwc
theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i
Mathlib_Data_Set_Lattice
case h₂.intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι✝ → Sort u_7 κ₁ : ι✝ → Sort u_8 κ₂ : ι✝ → Sort u_9 κ' : ι' → Sort u_10 ι : Type u_11 α : ι → Type u_12 v : (i : ι) → Set (α i) i : ι y : α i y_in : y ∈ v i z : (i : ι) → α i hz : z ∈ pi univ v ⊢ y ∈ v i ∧ ∀ (x : ι), x ≠ i → z x ∈ v x
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩ rw [@forall_update_iff ι α _ z i y fun i t => t ∈ v i]
exact ⟨y_in, fun j _ => by simpa using hz j⟩
theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩ rw [@forall_update_iff ι α _ z i y fun i t => t ∈ v i]
Mathlib.Data.Set.Lattice.762_0.5mONj49h3SYSDwc
theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i
Mathlib_Data_Set_Lattice
α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι✝ → Sort u_7 κ₁ : ι✝ → Sort u_8 κ₂ : ι✝ → Sort u_9 κ' : ι' → Sort u_10 ι : Type u_11 α : ι → Type u_12 v : (i : ι) → Set (α i) i : ι y : α i y_in : y ∈ v i z : (i : ι) → α i hz : z ∈ pi univ v j : ι x✝ : j ≠ i ⊢ z j ∈ v j
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩ rw [@forall_update_iff ι α _ z i y fun i t => t ∈ v i] exact ⟨y_in, fun j _ => by
simpa using hz j
theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩ rw [@forall_update_iff ι α _ z i y fun i t => t ∈ v i] exact ⟨y_in, fun j _ => by
Mathlib.Data.Set.Lattice.762_0.5mONj49h3SYSDwc
theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 s : ι → Set α ⊢ Set.Nonempty (⋃ i, s i) ↔ ∃ i, Set.Nonempty (s i)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩ rw [@forall_update_iff ι α _ z i y fun i t => t ∈ v i] exact ⟨y_in, fun j _ => by simpa using hz j⟩ #align set.image_projection_prod Set.image_projection_prod /-! ### Unions and intersections indexed by `Prop` -/ theorem iInter_false {s : False → Set α} : iInter s = univ := iInf_false #align set.Inter_false Set.iInter_false theorem iUnion_false {s : False → Set α} : iUnion s = ∅ := iSup_false #align set.Union_false Set.iUnion_false @[simp] theorem iInter_true {s : True → Set α} : iInter s = s trivial := iInf_true #align set.Inter_true Set.iInter_true @[simp] theorem iUnion_true {s : True → Set α} : iUnion s = s trivial := iSup_true #align set.Union_true Set.iUnion_true @[simp] theorem iInter_exists {p : ι → Prop} {f : Exists p → Set α} : ⋂ x, f x = ⋂ (i) (h : p i), f ⟨i, h⟩ := iInf_exists #align set.Inter_exists Set.iInter_exists @[simp] theorem iUnion_exists {p : ι → Prop} {f : Exists p → Set α} : ⋃ x, f x = ⋃ (i) (h : p i), f ⟨i, h⟩ := iSup_exists #align set.Union_exists Set.iUnion_exists @[simp] theorem iUnion_empty : (⋃ _ : ι, ∅ : Set α) = ∅ := iSup_bot #align set.Union_empty Set.iUnion_empty @[simp] theorem iInter_univ : (⋂ _ : ι, univ : Set α) = univ := iInf_top #align set.Inter_univ Set.iInter_univ section variable {s : ι → Set α} @[simp] theorem iUnion_eq_empty : ⋃ i, s i = ∅ ↔ ∀ i, s i = ∅ := iSup_eq_bot #align set.Union_eq_empty Set.iUnion_eq_empty @[simp] theorem iInter_eq_univ : ⋂ i, s i = univ ↔ ∀ i, s i = univ := iInf_eq_top #align set.Inter_eq_univ Set.iInter_eq_univ @[simp] theorem nonempty_iUnion : (⋃ i, s i).Nonempty ↔ ∃ i, (s i).Nonempty := by
simp [nonempty_iff_ne_empty]
@[simp] theorem nonempty_iUnion : (⋃ i, s i).Nonempty ↔ ∃ i, (s i).Nonempty := by
Mathlib.Data.Set.Lattice.833_0.5mONj49h3SYSDwc
@[simp] theorem nonempty_iUnion : (⋃ i, s i).Nonempty ↔ ∃ i, (s i).Nonempty
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 s✝ : ι → Set α t : Set α s : α → Set β ⊢ Set.Nonempty (⋃ i ∈ t, s i) ↔ ∃ i ∈ t, Set.Nonempty (s i)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩ rw [@forall_update_iff ι α _ z i y fun i t => t ∈ v i] exact ⟨y_in, fun j _ => by simpa using hz j⟩ #align set.image_projection_prod Set.image_projection_prod /-! ### Unions and intersections indexed by `Prop` -/ theorem iInter_false {s : False → Set α} : iInter s = univ := iInf_false #align set.Inter_false Set.iInter_false theorem iUnion_false {s : False → Set α} : iUnion s = ∅ := iSup_false #align set.Union_false Set.iUnion_false @[simp] theorem iInter_true {s : True → Set α} : iInter s = s trivial := iInf_true #align set.Inter_true Set.iInter_true @[simp] theorem iUnion_true {s : True → Set α} : iUnion s = s trivial := iSup_true #align set.Union_true Set.iUnion_true @[simp] theorem iInter_exists {p : ι → Prop} {f : Exists p → Set α} : ⋂ x, f x = ⋂ (i) (h : p i), f ⟨i, h⟩ := iInf_exists #align set.Inter_exists Set.iInter_exists @[simp] theorem iUnion_exists {p : ι → Prop} {f : Exists p → Set α} : ⋃ x, f x = ⋃ (i) (h : p i), f ⟨i, h⟩ := iSup_exists #align set.Union_exists Set.iUnion_exists @[simp] theorem iUnion_empty : (⋃ _ : ι, ∅ : Set α) = ∅ := iSup_bot #align set.Union_empty Set.iUnion_empty @[simp] theorem iInter_univ : (⋂ _ : ι, univ : Set α) = univ := iInf_top #align set.Inter_univ Set.iInter_univ section variable {s : ι → Set α} @[simp] theorem iUnion_eq_empty : ⋃ i, s i = ∅ ↔ ∀ i, s i = ∅ := iSup_eq_bot #align set.Union_eq_empty Set.iUnion_eq_empty @[simp] theorem iInter_eq_univ : ⋂ i, s i = univ ↔ ∀ i, s i = univ := iInf_eq_top #align set.Inter_eq_univ Set.iInter_eq_univ @[simp] theorem nonempty_iUnion : (⋃ i, s i).Nonempty ↔ ∃ i, (s i).Nonempty := by simp [nonempty_iff_ne_empty] #align set.nonempty_Union Set.nonempty_iUnion --Porting note: removing `simp`. `simp` can prove it theorem nonempty_biUnion {t : Set α} {s : α → Set β} : (⋃ i ∈ t, s i).Nonempty ↔ ∃ i ∈ t, (s i).Nonempty := by
simp
theorem nonempty_biUnion {t : Set α} {s : α → Set β} : (⋃ i ∈ t, s i).Nonempty ↔ ∃ i ∈ t, (s i).Nonempty := by
Mathlib.Data.Set.Lattice.839_0.5mONj49h3SYSDwc
theorem nonempty_biUnion {t : Set α} {s : α → Set β} : (⋃ i ∈ t, s i).Nonempty ↔ ∃ i ∈ t, (s i).Nonempty
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 p : ι → Prop q : ι → ι' → Prop s : (x : ι) → (y : ι') → p x ∧ q x y → Set α ⊢ ⋃ x, ⋃ y, ⋃ (h : p x ∧ q x y), s x y h = ⋃ x, ⋃ (hx : p x), ⋃ y, ⋃ (hy : q x y), s x y (_ : p x ∧ q x y)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩ rw [@forall_update_iff ι α _ z i y fun i t => t ∈ v i] exact ⟨y_in, fun j _ => by simpa using hz j⟩ #align set.image_projection_prod Set.image_projection_prod /-! ### Unions and intersections indexed by `Prop` -/ theorem iInter_false {s : False → Set α} : iInter s = univ := iInf_false #align set.Inter_false Set.iInter_false theorem iUnion_false {s : False → Set α} : iUnion s = ∅ := iSup_false #align set.Union_false Set.iUnion_false @[simp] theorem iInter_true {s : True → Set α} : iInter s = s trivial := iInf_true #align set.Inter_true Set.iInter_true @[simp] theorem iUnion_true {s : True → Set α} : iUnion s = s trivial := iSup_true #align set.Union_true Set.iUnion_true @[simp] theorem iInter_exists {p : ι → Prop} {f : Exists p → Set α} : ⋂ x, f x = ⋂ (i) (h : p i), f ⟨i, h⟩ := iInf_exists #align set.Inter_exists Set.iInter_exists @[simp] theorem iUnion_exists {p : ι → Prop} {f : Exists p → Set α} : ⋃ x, f x = ⋃ (i) (h : p i), f ⟨i, h⟩ := iSup_exists #align set.Union_exists Set.iUnion_exists @[simp] theorem iUnion_empty : (⋃ _ : ι, ∅ : Set α) = ∅ := iSup_bot #align set.Union_empty Set.iUnion_empty @[simp] theorem iInter_univ : (⋂ _ : ι, univ : Set α) = univ := iInf_top #align set.Inter_univ Set.iInter_univ section variable {s : ι → Set α} @[simp] theorem iUnion_eq_empty : ⋃ i, s i = ∅ ↔ ∀ i, s i = ∅ := iSup_eq_bot #align set.Union_eq_empty Set.iUnion_eq_empty @[simp] theorem iInter_eq_univ : ⋂ i, s i = univ ↔ ∀ i, s i = univ := iInf_eq_top #align set.Inter_eq_univ Set.iInter_eq_univ @[simp] theorem nonempty_iUnion : (⋃ i, s i).Nonempty ↔ ∃ i, (s i).Nonempty := by simp [nonempty_iff_ne_empty] #align set.nonempty_Union Set.nonempty_iUnion --Porting note: removing `simp`. `simp` can prove it theorem nonempty_biUnion {t : Set α} {s : α → Set β} : (⋃ i ∈ t, s i).Nonempty ↔ ∃ i ∈ t, (s i).Nonempty := by simp #align set.nonempty_bUnion Set.nonempty_biUnion theorem iUnion_nonempty_index (s : Set α) (t : s.Nonempty → Set β) : ⋃ h, t h = ⋃ x ∈ s, t ⟨x, ‹_›⟩ := iSup_exists #align set.Union_nonempty_index Set.iUnion_nonempty_index end @[simp] theorem iInter_iInter_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋂ (x) (h : x = b), s x h = s b rfl := iInf_iInf_eq_left #align set.Inter_Inter_eq_left Set.iInter_iInter_eq_left @[simp] theorem iInter_iInter_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋂ (x) (h : b = x), s x h = s b rfl := iInf_iInf_eq_right #align set.Inter_Inter_eq_right Set.iInter_iInter_eq_right @[simp] theorem iUnion_iUnion_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋃ (x) (h : x = b), s x h = s b rfl := iSup_iSup_eq_left #align set.Union_Union_eq_left Set.iUnion_iUnion_eq_left @[simp] theorem iUnion_iUnion_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋃ (x) (h : b = x), s x h = s b rfl := iSup_iSup_eq_right #align set.Union_Union_eq_right Set.iUnion_iUnion_eq_right theorem iInter_or {p q : Prop} (s : p ∨ q → Set α) : ⋂ h, s h = (⋂ h : p, s (Or.inl h)) ∩ ⋂ h : q, s (Or.inr h) := iInf_or #align set.Inter_or Set.iInter_or theorem iUnion_or {p q : Prop} (s : p ∨ q → Set α) : ⋃ h, s h = (⋃ i, s (Or.inl i)) ∪ ⋃ j, s (Or.inr j) := iSup_or #align set.Union_or Set.iUnion_or /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iUnion_and {p q : Prop} (s : p ∧ q → Set α) : ⋃ h, s h = ⋃ (hp) (hq), s ⟨hp, hq⟩ := iSup_and #align set.Union_and Set.iUnion_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iInter_and {p q : Prop} (s : p ∧ q → Set α) : ⋂ h, s h = ⋂ (hp) (hq), s ⟨hp, hq⟩ := iInf_and #align set.Inter_and Set.iInter_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iUnion_comm (s : ι → ι' → Set α) : ⋃ (i) (i'), s i i' = ⋃ (i') (i), s i i' := iSup_comm #align set.Union_comm Set.iUnion_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iInter_comm (s : ι → ι' → Set α) : ⋂ (i) (i'), s i i' = ⋂ (i') (i), s i i' := iInf_comm #align set.Inter_comm Set.iInter_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iUnion₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋃ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋃ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iSup₂_comm _ #align set.Union₂_comm Set.iUnion₂_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iInter₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋂ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋂ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iInf₂_comm _ #align set.Inter₂_comm Set.iInter₂_comm @[simp] theorem biUnion_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋃ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by
simp only [iUnion_and, @iUnion_comm _ ι']
@[simp] theorem biUnion_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋃ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by
Mathlib.Data.Set.Lattice.920_0.5mONj49h3SYSDwc
@[simp] theorem biUnion_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋃ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 p : ι' → Prop q : ι → ι' → Prop s : (x : ι) → (y : ι') → p y ∧ q x y → Set α ⊢ ⋃ x, ⋃ y, ⋃ (h : p y ∧ q x y), s x y h = ⋃ y, ⋃ (hy : p y), ⋃ x, ⋃ (hx : q x y), s x y (_ : p y ∧ q x y)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩ rw [@forall_update_iff ι α _ z i y fun i t => t ∈ v i] exact ⟨y_in, fun j _ => by simpa using hz j⟩ #align set.image_projection_prod Set.image_projection_prod /-! ### Unions and intersections indexed by `Prop` -/ theorem iInter_false {s : False → Set α} : iInter s = univ := iInf_false #align set.Inter_false Set.iInter_false theorem iUnion_false {s : False → Set α} : iUnion s = ∅ := iSup_false #align set.Union_false Set.iUnion_false @[simp] theorem iInter_true {s : True → Set α} : iInter s = s trivial := iInf_true #align set.Inter_true Set.iInter_true @[simp] theorem iUnion_true {s : True → Set α} : iUnion s = s trivial := iSup_true #align set.Union_true Set.iUnion_true @[simp] theorem iInter_exists {p : ι → Prop} {f : Exists p → Set α} : ⋂ x, f x = ⋂ (i) (h : p i), f ⟨i, h⟩ := iInf_exists #align set.Inter_exists Set.iInter_exists @[simp] theorem iUnion_exists {p : ι → Prop} {f : Exists p → Set α} : ⋃ x, f x = ⋃ (i) (h : p i), f ⟨i, h⟩ := iSup_exists #align set.Union_exists Set.iUnion_exists @[simp] theorem iUnion_empty : (⋃ _ : ι, ∅ : Set α) = ∅ := iSup_bot #align set.Union_empty Set.iUnion_empty @[simp] theorem iInter_univ : (⋂ _ : ι, univ : Set α) = univ := iInf_top #align set.Inter_univ Set.iInter_univ section variable {s : ι → Set α} @[simp] theorem iUnion_eq_empty : ⋃ i, s i = ∅ ↔ ∀ i, s i = ∅ := iSup_eq_bot #align set.Union_eq_empty Set.iUnion_eq_empty @[simp] theorem iInter_eq_univ : ⋂ i, s i = univ ↔ ∀ i, s i = univ := iInf_eq_top #align set.Inter_eq_univ Set.iInter_eq_univ @[simp] theorem nonempty_iUnion : (⋃ i, s i).Nonempty ↔ ∃ i, (s i).Nonempty := by simp [nonempty_iff_ne_empty] #align set.nonempty_Union Set.nonempty_iUnion --Porting note: removing `simp`. `simp` can prove it theorem nonempty_biUnion {t : Set α} {s : α → Set β} : (⋃ i ∈ t, s i).Nonempty ↔ ∃ i ∈ t, (s i).Nonempty := by simp #align set.nonempty_bUnion Set.nonempty_biUnion theorem iUnion_nonempty_index (s : Set α) (t : s.Nonempty → Set β) : ⋃ h, t h = ⋃ x ∈ s, t ⟨x, ‹_›⟩ := iSup_exists #align set.Union_nonempty_index Set.iUnion_nonempty_index end @[simp] theorem iInter_iInter_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋂ (x) (h : x = b), s x h = s b rfl := iInf_iInf_eq_left #align set.Inter_Inter_eq_left Set.iInter_iInter_eq_left @[simp] theorem iInter_iInter_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋂ (x) (h : b = x), s x h = s b rfl := iInf_iInf_eq_right #align set.Inter_Inter_eq_right Set.iInter_iInter_eq_right @[simp] theorem iUnion_iUnion_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋃ (x) (h : x = b), s x h = s b rfl := iSup_iSup_eq_left #align set.Union_Union_eq_left Set.iUnion_iUnion_eq_left @[simp] theorem iUnion_iUnion_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋃ (x) (h : b = x), s x h = s b rfl := iSup_iSup_eq_right #align set.Union_Union_eq_right Set.iUnion_iUnion_eq_right theorem iInter_or {p q : Prop} (s : p ∨ q → Set α) : ⋂ h, s h = (⋂ h : p, s (Or.inl h)) ∩ ⋂ h : q, s (Or.inr h) := iInf_or #align set.Inter_or Set.iInter_or theorem iUnion_or {p q : Prop} (s : p ∨ q → Set α) : ⋃ h, s h = (⋃ i, s (Or.inl i)) ∪ ⋃ j, s (Or.inr j) := iSup_or #align set.Union_or Set.iUnion_or /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iUnion_and {p q : Prop} (s : p ∧ q → Set α) : ⋃ h, s h = ⋃ (hp) (hq), s ⟨hp, hq⟩ := iSup_and #align set.Union_and Set.iUnion_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iInter_and {p q : Prop} (s : p ∧ q → Set α) : ⋂ h, s h = ⋂ (hp) (hq), s ⟨hp, hq⟩ := iInf_and #align set.Inter_and Set.iInter_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iUnion_comm (s : ι → ι' → Set α) : ⋃ (i) (i'), s i i' = ⋃ (i') (i), s i i' := iSup_comm #align set.Union_comm Set.iUnion_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iInter_comm (s : ι → ι' → Set α) : ⋂ (i) (i'), s i i' = ⋂ (i') (i), s i i' := iInf_comm #align set.Inter_comm Set.iInter_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iUnion₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋃ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋃ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iSup₂_comm _ #align set.Union₂_comm Set.iUnion₂_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iInter₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋂ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋂ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iInf₂_comm _ #align set.Inter₂_comm Set.iInter₂_comm @[simp] theorem biUnion_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋃ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iUnion_and, @iUnion_comm _ ι'] #align set.bUnion_and Set.biUnion_and @[simp] theorem biUnion_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋃ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by
simp only [iUnion_and, @iUnion_comm _ ι]
@[simp] theorem biUnion_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋃ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by
Mathlib.Data.Set.Lattice.927_0.5mONj49h3SYSDwc
@[simp] theorem biUnion_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋃ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 p : ι → Prop q : ι → ι' → Prop s : (x : ι) → (y : ι') → p x ∧ q x y → Set α ⊢ ⋂ x, ⋂ y, ⋂ (h : p x ∧ q x y), s x y h = ⋂ x, ⋂ (hx : p x), ⋂ y, ⋂ (hy : q x y), s x y (_ : p x ∧ q x y)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩ rw [@forall_update_iff ι α _ z i y fun i t => t ∈ v i] exact ⟨y_in, fun j _ => by simpa using hz j⟩ #align set.image_projection_prod Set.image_projection_prod /-! ### Unions and intersections indexed by `Prop` -/ theorem iInter_false {s : False → Set α} : iInter s = univ := iInf_false #align set.Inter_false Set.iInter_false theorem iUnion_false {s : False → Set α} : iUnion s = ∅ := iSup_false #align set.Union_false Set.iUnion_false @[simp] theorem iInter_true {s : True → Set α} : iInter s = s trivial := iInf_true #align set.Inter_true Set.iInter_true @[simp] theorem iUnion_true {s : True → Set α} : iUnion s = s trivial := iSup_true #align set.Union_true Set.iUnion_true @[simp] theorem iInter_exists {p : ι → Prop} {f : Exists p → Set α} : ⋂ x, f x = ⋂ (i) (h : p i), f ⟨i, h⟩ := iInf_exists #align set.Inter_exists Set.iInter_exists @[simp] theorem iUnion_exists {p : ι → Prop} {f : Exists p → Set α} : ⋃ x, f x = ⋃ (i) (h : p i), f ⟨i, h⟩ := iSup_exists #align set.Union_exists Set.iUnion_exists @[simp] theorem iUnion_empty : (⋃ _ : ι, ∅ : Set α) = ∅ := iSup_bot #align set.Union_empty Set.iUnion_empty @[simp] theorem iInter_univ : (⋂ _ : ι, univ : Set α) = univ := iInf_top #align set.Inter_univ Set.iInter_univ section variable {s : ι → Set α} @[simp] theorem iUnion_eq_empty : ⋃ i, s i = ∅ ↔ ∀ i, s i = ∅ := iSup_eq_bot #align set.Union_eq_empty Set.iUnion_eq_empty @[simp] theorem iInter_eq_univ : ⋂ i, s i = univ ↔ ∀ i, s i = univ := iInf_eq_top #align set.Inter_eq_univ Set.iInter_eq_univ @[simp] theorem nonempty_iUnion : (⋃ i, s i).Nonempty ↔ ∃ i, (s i).Nonempty := by simp [nonempty_iff_ne_empty] #align set.nonempty_Union Set.nonempty_iUnion --Porting note: removing `simp`. `simp` can prove it theorem nonempty_biUnion {t : Set α} {s : α → Set β} : (⋃ i ∈ t, s i).Nonempty ↔ ∃ i ∈ t, (s i).Nonempty := by simp #align set.nonempty_bUnion Set.nonempty_biUnion theorem iUnion_nonempty_index (s : Set α) (t : s.Nonempty → Set β) : ⋃ h, t h = ⋃ x ∈ s, t ⟨x, ‹_›⟩ := iSup_exists #align set.Union_nonempty_index Set.iUnion_nonempty_index end @[simp] theorem iInter_iInter_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋂ (x) (h : x = b), s x h = s b rfl := iInf_iInf_eq_left #align set.Inter_Inter_eq_left Set.iInter_iInter_eq_left @[simp] theorem iInter_iInter_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋂ (x) (h : b = x), s x h = s b rfl := iInf_iInf_eq_right #align set.Inter_Inter_eq_right Set.iInter_iInter_eq_right @[simp] theorem iUnion_iUnion_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋃ (x) (h : x = b), s x h = s b rfl := iSup_iSup_eq_left #align set.Union_Union_eq_left Set.iUnion_iUnion_eq_left @[simp] theorem iUnion_iUnion_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋃ (x) (h : b = x), s x h = s b rfl := iSup_iSup_eq_right #align set.Union_Union_eq_right Set.iUnion_iUnion_eq_right theorem iInter_or {p q : Prop} (s : p ∨ q → Set α) : ⋂ h, s h = (⋂ h : p, s (Or.inl h)) ∩ ⋂ h : q, s (Or.inr h) := iInf_or #align set.Inter_or Set.iInter_or theorem iUnion_or {p q : Prop} (s : p ∨ q → Set α) : ⋃ h, s h = (⋃ i, s (Or.inl i)) ∪ ⋃ j, s (Or.inr j) := iSup_or #align set.Union_or Set.iUnion_or /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iUnion_and {p q : Prop} (s : p ∧ q → Set α) : ⋃ h, s h = ⋃ (hp) (hq), s ⟨hp, hq⟩ := iSup_and #align set.Union_and Set.iUnion_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iInter_and {p q : Prop} (s : p ∧ q → Set α) : ⋂ h, s h = ⋂ (hp) (hq), s ⟨hp, hq⟩ := iInf_and #align set.Inter_and Set.iInter_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iUnion_comm (s : ι → ι' → Set α) : ⋃ (i) (i'), s i i' = ⋃ (i') (i), s i i' := iSup_comm #align set.Union_comm Set.iUnion_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iInter_comm (s : ι → ι' → Set α) : ⋂ (i) (i'), s i i' = ⋂ (i') (i), s i i' := iInf_comm #align set.Inter_comm Set.iInter_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iUnion₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋃ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋃ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iSup₂_comm _ #align set.Union₂_comm Set.iUnion₂_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iInter₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋂ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋂ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iInf₂_comm _ #align set.Inter₂_comm Set.iInter₂_comm @[simp] theorem biUnion_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋃ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iUnion_and, @iUnion_comm _ ι'] #align set.bUnion_and Set.biUnion_and @[simp] theorem biUnion_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋃ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iUnion_and, @iUnion_comm _ ι] #align set.bUnion_and' Set.biUnion_and' @[simp] theorem biInter_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋂ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by
simp only [iInter_and, @iInter_comm _ ι']
@[simp] theorem biInter_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋂ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by
Mathlib.Data.Set.Lattice.934_0.5mONj49h3SYSDwc
@[simp] theorem biInter_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋂ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 p : ι' → Prop q : ι → ι' → Prop s : (x : ι) → (y : ι') → p y ∧ q x y → Set α ⊢ ⋂ x, ⋂ y, ⋂ (h : p y ∧ q x y), s x y h = ⋂ y, ⋂ (hy : p y), ⋂ x, ⋂ (hx : q x y), s x y (_ : p y ∧ q x y)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩ rw [@forall_update_iff ι α _ z i y fun i t => t ∈ v i] exact ⟨y_in, fun j _ => by simpa using hz j⟩ #align set.image_projection_prod Set.image_projection_prod /-! ### Unions and intersections indexed by `Prop` -/ theorem iInter_false {s : False → Set α} : iInter s = univ := iInf_false #align set.Inter_false Set.iInter_false theorem iUnion_false {s : False → Set α} : iUnion s = ∅ := iSup_false #align set.Union_false Set.iUnion_false @[simp] theorem iInter_true {s : True → Set α} : iInter s = s trivial := iInf_true #align set.Inter_true Set.iInter_true @[simp] theorem iUnion_true {s : True → Set α} : iUnion s = s trivial := iSup_true #align set.Union_true Set.iUnion_true @[simp] theorem iInter_exists {p : ι → Prop} {f : Exists p → Set α} : ⋂ x, f x = ⋂ (i) (h : p i), f ⟨i, h⟩ := iInf_exists #align set.Inter_exists Set.iInter_exists @[simp] theorem iUnion_exists {p : ι → Prop} {f : Exists p → Set α} : ⋃ x, f x = ⋃ (i) (h : p i), f ⟨i, h⟩ := iSup_exists #align set.Union_exists Set.iUnion_exists @[simp] theorem iUnion_empty : (⋃ _ : ι, ∅ : Set α) = ∅ := iSup_bot #align set.Union_empty Set.iUnion_empty @[simp] theorem iInter_univ : (⋂ _ : ι, univ : Set α) = univ := iInf_top #align set.Inter_univ Set.iInter_univ section variable {s : ι → Set α} @[simp] theorem iUnion_eq_empty : ⋃ i, s i = ∅ ↔ ∀ i, s i = ∅ := iSup_eq_bot #align set.Union_eq_empty Set.iUnion_eq_empty @[simp] theorem iInter_eq_univ : ⋂ i, s i = univ ↔ ∀ i, s i = univ := iInf_eq_top #align set.Inter_eq_univ Set.iInter_eq_univ @[simp] theorem nonempty_iUnion : (⋃ i, s i).Nonempty ↔ ∃ i, (s i).Nonempty := by simp [nonempty_iff_ne_empty] #align set.nonempty_Union Set.nonempty_iUnion --Porting note: removing `simp`. `simp` can prove it theorem nonempty_biUnion {t : Set α} {s : α → Set β} : (⋃ i ∈ t, s i).Nonempty ↔ ∃ i ∈ t, (s i).Nonempty := by simp #align set.nonempty_bUnion Set.nonempty_biUnion theorem iUnion_nonempty_index (s : Set α) (t : s.Nonempty → Set β) : ⋃ h, t h = ⋃ x ∈ s, t ⟨x, ‹_›⟩ := iSup_exists #align set.Union_nonempty_index Set.iUnion_nonempty_index end @[simp] theorem iInter_iInter_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋂ (x) (h : x = b), s x h = s b rfl := iInf_iInf_eq_left #align set.Inter_Inter_eq_left Set.iInter_iInter_eq_left @[simp] theorem iInter_iInter_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋂ (x) (h : b = x), s x h = s b rfl := iInf_iInf_eq_right #align set.Inter_Inter_eq_right Set.iInter_iInter_eq_right @[simp] theorem iUnion_iUnion_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋃ (x) (h : x = b), s x h = s b rfl := iSup_iSup_eq_left #align set.Union_Union_eq_left Set.iUnion_iUnion_eq_left @[simp] theorem iUnion_iUnion_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋃ (x) (h : b = x), s x h = s b rfl := iSup_iSup_eq_right #align set.Union_Union_eq_right Set.iUnion_iUnion_eq_right theorem iInter_or {p q : Prop} (s : p ∨ q → Set α) : ⋂ h, s h = (⋂ h : p, s (Or.inl h)) ∩ ⋂ h : q, s (Or.inr h) := iInf_or #align set.Inter_or Set.iInter_or theorem iUnion_or {p q : Prop} (s : p ∨ q → Set α) : ⋃ h, s h = (⋃ i, s (Or.inl i)) ∪ ⋃ j, s (Or.inr j) := iSup_or #align set.Union_or Set.iUnion_or /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iUnion_and {p q : Prop} (s : p ∧ q → Set α) : ⋃ h, s h = ⋃ (hp) (hq), s ⟨hp, hq⟩ := iSup_and #align set.Union_and Set.iUnion_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iInter_and {p q : Prop} (s : p ∧ q → Set α) : ⋂ h, s h = ⋂ (hp) (hq), s ⟨hp, hq⟩ := iInf_and #align set.Inter_and Set.iInter_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iUnion_comm (s : ι → ι' → Set α) : ⋃ (i) (i'), s i i' = ⋃ (i') (i), s i i' := iSup_comm #align set.Union_comm Set.iUnion_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iInter_comm (s : ι → ι' → Set α) : ⋂ (i) (i'), s i i' = ⋂ (i') (i), s i i' := iInf_comm #align set.Inter_comm Set.iInter_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iUnion₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋃ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋃ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iSup₂_comm _ #align set.Union₂_comm Set.iUnion₂_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iInter₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋂ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋂ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iInf₂_comm _ #align set.Inter₂_comm Set.iInter₂_comm @[simp] theorem biUnion_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋃ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iUnion_and, @iUnion_comm _ ι'] #align set.bUnion_and Set.biUnion_and @[simp] theorem biUnion_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋃ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iUnion_and, @iUnion_comm _ ι] #align set.bUnion_and' Set.biUnion_and' @[simp] theorem biInter_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋂ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iInter_and, @iInter_comm _ ι'] #align set.bInter_and Set.biInter_and @[simp] theorem biInter_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋂ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by
simp only [iInter_and, @iInter_comm _ ι]
@[simp] theorem biInter_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋂ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by
Mathlib.Data.Set.Lattice.941_0.5mONj49h3SYSDwc
@[simp] theorem biInter_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋂ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 b : β p : β → Prop s : (x : β) → x = b ∨ p x → Set α ⊢ ⋃ x, ⋃ (h : x = b ∨ p x), s x h = s b (_ : b = b ∨ p b) ∪ ⋃ x, ⋃ (h : p x), s x (_ : x = b ∨ p x)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩ rw [@forall_update_iff ι α _ z i y fun i t => t ∈ v i] exact ⟨y_in, fun j _ => by simpa using hz j⟩ #align set.image_projection_prod Set.image_projection_prod /-! ### Unions and intersections indexed by `Prop` -/ theorem iInter_false {s : False → Set α} : iInter s = univ := iInf_false #align set.Inter_false Set.iInter_false theorem iUnion_false {s : False → Set α} : iUnion s = ∅ := iSup_false #align set.Union_false Set.iUnion_false @[simp] theorem iInter_true {s : True → Set α} : iInter s = s trivial := iInf_true #align set.Inter_true Set.iInter_true @[simp] theorem iUnion_true {s : True → Set α} : iUnion s = s trivial := iSup_true #align set.Union_true Set.iUnion_true @[simp] theorem iInter_exists {p : ι → Prop} {f : Exists p → Set α} : ⋂ x, f x = ⋂ (i) (h : p i), f ⟨i, h⟩ := iInf_exists #align set.Inter_exists Set.iInter_exists @[simp] theorem iUnion_exists {p : ι → Prop} {f : Exists p → Set α} : ⋃ x, f x = ⋃ (i) (h : p i), f ⟨i, h⟩ := iSup_exists #align set.Union_exists Set.iUnion_exists @[simp] theorem iUnion_empty : (⋃ _ : ι, ∅ : Set α) = ∅ := iSup_bot #align set.Union_empty Set.iUnion_empty @[simp] theorem iInter_univ : (⋂ _ : ι, univ : Set α) = univ := iInf_top #align set.Inter_univ Set.iInter_univ section variable {s : ι → Set α} @[simp] theorem iUnion_eq_empty : ⋃ i, s i = ∅ ↔ ∀ i, s i = ∅ := iSup_eq_bot #align set.Union_eq_empty Set.iUnion_eq_empty @[simp] theorem iInter_eq_univ : ⋂ i, s i = univ ↔ ∀ i, s i = univ := iInf_eq_top #align set.Inter_eq_univ Set.iInter_eq_univ @[simp] theorem nonempty_iUnion : (⋃ i, s i).Nonempty ↔ ∃ i, (s i).Nonempty := by simp [nonempty_iff_ne_empty] #align set.nonempty_Union Set.nonempty_iUnion --Porting note: removing `simp`. `simp` can prove it theorem nonempty_biUnion {t : Set α} {s : α → Set β} : (⋃ i ∈ t, s i).Nonempty ↔ ∃ i ∈ t, (s i).Nonempty := by simp #align set.nonempty_bUnion Set.nonempty_biUnion theorem iUnion_nonempty_index (s : Set α) (t : s.Nonempty → Set β) : ⋃ h, t h = ⋃ x ∈ s, t ⟨x, ‹_›⟩ := iSup_exists #align set.Union_nonempty_index Set.iUnion_nonempty_index end @[simp] theorem iInter_iInter_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋂ (x) (h : x = b), s x h = s b rfl := iInf_iInf_eq_left #align set.Inter_Inter_eq_left Set.iInter_iInter_eq_left @[simp] theorem iInter_iInter_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋂ (x) (h : b = x), s x h = s b rfl := iInf_iInf_eq_right #align set.Inter_Inter_eq_right Set.iInter_iInter_eq_right @[simp] theorem iUnion_iUnion_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋃ (x) (h : x = b), s x h = s b rfl := iSup_iSup_eq_left #align set.Union_Union_eq_left Set.iUnion_iUnion_eq_left @[simp] theorem iUnion_iUnion_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋃ (x) (h : b = x), s x h = s b rfl := iSup_iSup_eq_right #align set.Union_Union_eq_right Set.iUnion_iUnion_eq_right theorem iInter_or {p q : Prop} (s : p ∨ q → Set α) : ⋂ h, s h = (⋂ h : p, s (Or.inl h)) ∩ ⋂ h : q, s (Or.inr h) := iInf_or #align set.Inter_or Set.iInter_or theorem iUnion_or {p q : Prop} (s : p ∨ q → Set α) : ⋃ h, s h = (⋃ i, s (Or.inl i)) ∪ ⋃ j, s (Or.inr j) := iSup_or #align set.Union_or Set.iUnion_or /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iUnion_and {p q : Prop} (s : p ∧ q → Set α) : ⋃ h, s h = ⋃ (hp) (hq), s ⟨hp, hq⟩ := iSup_and #align set.Union_and Set.iUnion_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iInter_and {p q : Prop} (s : p ∧ q → Set α) : ⋂ h, s h = ⋂ (hp) (hq), s ⟨hp, hq⟩ := iInf_and #align set.Inter_and Set.iInter_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iUnion_comm (s : ι → ι' → Set α) : ⋃ (i) (i'), s i i' = ⋃ (i') (i), s i i' := iSup_comm #align set.Union_comm Set.iUnion_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iInter_comm (s : ι → ι' → Set α) : ⋂ (i) (i'), s i i' = ⋂ (i') (i), s i i' := iInf_comm #align set.Inter_comm Set.iInter_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iUnion₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋃ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋃ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iSup₂_comm _ #align set.Union₂_comm Set.iUnion₂_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iInter₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋂ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋂ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iInf₂_comm _ #align set.Inter₂_comm Set.iInter₂_comm @[simp] theorem biUnion_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋃ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iUnion_and, @iUnion_comm _ ι'] #align set.bUnion_and Set.biUnion_and @[simp] theorem biUnion_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋃ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iUnion_and, @iUnion_comm _ ι] #align set.bUnion_and' Set.biUnion_and' @[simp] theorem biInter_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋂ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iInter_and, @iInter_comm _ ι'] #align set.bInter_and Set.biInter_and @[simp] theorem biInter_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋂ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iInter_and, @iInter_comm _ ι] #align set.bInter_and' Set.biInter_and' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (x h) -/ @[simp] theorem iUnion_iUnion_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋃ (x) (h), s x h = s b (Or.inl rfl) ∪ ⋃ (x) (h : p x), s x (Or.inr h) := by
simp only [iUnion_or, iUnion_union_distrib, iUnion_iUnion_eq_left]
@[simp] theorem iUnion_iUnion_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋃ (x) (h), s x h = s b (Or.inl rfl) ∪ ⋃ (x) (h : p x), s x (Or.inr h) := by
Mathlib.Data.Set.Lattice.949_0.5mONj49h3SYSDwc
@[simp] theorem iUnion_iUnion_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋃ (x) (h), s x h = s b (Or.inl rfl) ∪ ⋃ (x) (h : p x), s x (Or.inr h)
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 b : β p : β → Prop s : (x : β) → x = b ∨ p x → Set α ⊢ ⋂ x, ⋂ (h : x = b ∨ p x), s x h = s b (_ : b = b ∨ p b) ∩ ⋂ x, ⋂ (h : p x), s x (_ : x = b ∨ p x)
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩ rw [@forall_update_iff ι α _ z i y fun i t => t ∈ v i] exact ⟨y_in, fun j _ => by simpa using hz j⟩ #align set.image_projection_prod Set.image_projection_prod /-! ### Unions and intersections indexed by `Prop` -/ theorem iInter_false {s : False → Set α} : iInter s = univ := iInf_false #align set.Inter_false Set.iInter_false theorem iUnion_false {s : False → Set α} : iUnion s = ∅ := iSup_false #align set.Union_false Set.iUnion_false @[simp] theorem iInter_true {s : True → Set α} : iInter s = s trivial := iInf_true #align set.Inter_true Set.iInter_true @[simp] theorem iUnion_true {s : True → Set α} : iUnion s = s trivial := iSup_true #align set.Union_true Set.iUnion_true @[simp] theorem iInter_exists {p : ι → Prop} {f : Exists p → Set α} : ⋂ x, f x = ⋂ (i) (h : p i), f ⟨i, h⟩ := iInf_exists #align set.Inter_exists Set.iInter_exists @[simp] theorem iUnion_exists {p : ι → Prop} {f : Exists p → Set α} : ⋃ x, f x = ⋃ (i) (h : p i), f ⟨i, h⟩ := iSup_exists #align set.Union_exists Set.iUnion_exists @[simp] theorem iUnion_empty : (⋃ _ : ι, ∅ : Set α) = ∅ := iSup_bot #align set.Union_empty Set.iUnion_empty @[simp] theorem iInter_univ : (⋂ _ : ι, univ : Set α) = univ := iInf_top #align set.Inter_univ Set.iInter_univ section variable {s : ι → Set α} @[simp] theorem iUnion_eq_empty : ⋃ i, s i = ∅ ↔ ∀ i, s i = ∅ := iSup_eq_bot #align set.Union_eq_empty Set.iUnion_eq_empty @[simp] theorem iInter_eq_univ : ⋂ i, s i = univ ↔ ∀ i, s i = univ := iInf_eq_top #align set.Inter_eq_univ Set.iInter_eq_univ @[simp] theorem nonempty_iUnion : (⋃ i, s i).Nonempty ↔ ∃ i, (s i).Nonempty := by simp [nonempty_iff_ne_empty] #align set.nonempty_Union Set.nonempty_iUnion --Porting note: removing `simp`. `simp` can prove it theorem nonempty_biUnion {t : Set α} {s : α → Set β} : (⋃ i ∈ t, s i).Nonempty ↔ ∃ i ∈ t, (s i).Nonempty := by simp #align set.nonempty_bUnion Set.nonempty_biUnion theorem iUnion_nonempty_index (s : Set α) (t : s.Nonempty → Set β) : ⋃ h, t h = ⋃ x ∈ s, t ⟨x, ‹_›⟩ := iSup_exists #align set.Union_nonempty_index Set.iUnion_nonempty_index end @[simp] theorem iInter_iInter_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋂ (x) (h : x = b), s x h = s b rfl := iInf_iInf_eq_left #align set.Inter_Inter_eq_left Set.iInter_iInter_eq_left @[simp] theorem iInter_iInter_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋂ (x) (h : b = x), s x h = s b rfl := iInf_iInf_eq_right #align set.Inter_Inter_eq_right Set.iInter_iInter_eq_right @[simp] theorem iUnion_iUnion_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋃ (x) (h : x = b), s x h = s b rfl := iSup_iSup_eq_left #align set.Union_Union_eq_left Set.iUnion_iUnion_eq_left @[simp] theorem iUnion_iUnion_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋃ (x) (h : b = x), s x h = s b rfl := iSup_iSup_eq_right #align set.Union_Union_eq_right Set.iUnion_iUnion_eq_right theorem iInter_or {p q : Prop} (s : p ∨ q → Set α) : ⋂ h, s h = (⋂ h : p, s (Or.inl h)) ∩ ⋂ h : q, s (Or.inr h) := iInf_or #align set.Inter_or Set.iInter_or theorem iUnion_or {p q : Prop} (s : p ∨ q → Set α) : ⋃ h, s h = (⋃ i, s (Or.inl i)) ∪ ⋃ j, s (Or.inr j) := iSup_or #align set.Union_or Set.iUnion_or /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iUnion_and {p q : Prop} (s : p ∧ q → Set α) : ⋃ h, s h = ⋃ (hp) (hq), s ⟨hp, hq⟩ := iSup_and #align set.Union_and Set.iUnion_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iInter_and {p q : Prop} (s : p ∧ q → Set α) : ⋂ h, s h = ⋂ (hp) (hq), s ⟨hp, hq⟩ := iInf_and #align set.Inter_and Set.iInter_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iUnion_comm (s : ι → ι' → Set α) : ⋃ (i) (i'), s i i' = ⋃ (i') (i), s i i' := iSup_comm #align set.Union_comm Set.iUnion_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iInter_comm (s : ι → ι' → Set α) : ⋂ (i) (i'), s i i' = ⋂ (i') (i), s i i' := iInf_comm #align set.Inter_comm Set.iInter_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iUnion₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋃ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋃ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iSup₂_comm _ #align set.Union₂_comm Set.iUnion₂_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iInter₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋂ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋂ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iInf₂_comm _ #align set.Inter₂_comm Set.iInter₂_comm @[simp] theorem biUnion_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋃ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iUnion_and, @iUnion_comm _ ι'] #align set.bUnion_and Set.biUnion_and @[simp] theorem biUnion_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋃ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iUnion_and, @iUnion_comm _ ι] #align set.bUnion_and' Set.biUnion_and' @[simp] theorem biInter_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋂ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iInter_and, @iInter_comm _ ι'] #align set.bInter_and Set.biInter_and @[simp] theorem biInter_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋂ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iInter_and, @iInter_comm _ ι] #align set.bInter_and' Set.biInter_and' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (x h) -/ @[simp] theorem iUnion_iUnion_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋃ (x) (h), s x h = s b (Or.inl rfl) ∪ ⋃ (x) (h : p x), s x (Or.inr h) := by simp only [iUnion_or, iUnion_union_distrib, iUnion_iUnion_eq_left] #align set.Union_Union_eq_or_left Set.iUnion_iUnion_eq_or_left /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (x h) -/ @[simp] theorem iInter_iInter_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋂ (x) (h), s x h = s b (Or.inl rfl) ∩ ⋂ (x) (h : p x), s x (Or.inr h) := by
simp only [iInter_or, iInter_inter_distrib, iInter_iInter_eq_left]
@[simp] theorem iInter_iInter_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋂ (x) (h), s x h = s b (Or.inl rfl) ∩ ⋂ (x) (h : p x), s x (Or.inr h) := by
Mathlib.Data.Set.Lattice.956_0.5mONj49h3SYSDwc
@[simp] theorem iInter_iInter_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋂ (x) (h), s x h = s b (Or.inl rfl) ∩ ⋂ (x) (h : p x), s x (Or.inr h)
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 s : Set α ⊢ ⋃ (_ : Set.Nonempty s), s = s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩ rw [@forall_update_iff ι α _ z i y fun i t => t ∈ v i] exact ⟨y_in, fun j _ => by simpa using hz j⟩ #align set.image_projection_prod Set.image_projection_prod /-! ### Unions and intersections indexed by `Prop` -/ theorem iInter_false {s : False → Set α} : iInter s = univ := iInf_false #align set.Inter_false Set.iInter_false theorem iUnion_false {s : False → Set α} : iUnion s = ∅ := iSup_false #align set.Union_false Set.iUnion_false @[simp] theorem iInter_true {s : True → Set α} : iInter s = s trivial := iInf_true #align set.Inter_true Set.iInter_true @[simp] theorem iUnion_true {s : True → Set α} : iUnion s = s trivial := iSup_true #align set.Union_true Set.iUnion_true @[simp] theorem iInter_exists {p : ι → Prop} {f : Exists p → Set α} : ⋂ x, f x = ⋂ (i) (h : p i), f ⟨i, h⟩ := iInf_exists #align set.Inter_exists Set.iInter_exists @[simp] theorem iUnion_exists {p : ι → Prop} {f : Exists p → Set α} : ⋃ x, f x = ⋃ (i) (h : p i), f ⟨i, h⟩ := iSup_exists #align set.Union_exists Set.iUnion_exists @[simp] theorem iUnion_empty : (⋃ _ : ι, ∅ : Set α) = ∅ := iSup_bot #align set.Union_empty Set.iUnion_empty @[simp] theorem iInter_univ : (⋂ _ : ι, univ : Set α) = univ := iInf_top #align set.Inter_univ Set.iInter_univ section variable {s : ι → Set α} @[simp] theorem iUnion_eq_empty : ⋃ i, s i = ∅ ↔ ∀ i, s i = ∅ := iSup_eq_bot #align set.Union_eq_empty Set.iUnion_eq_empty @[simp] theorem iInter_eq_univ : ⋂ i, s i = univ ↔ ∀ i, s i = univ := iInf_eq_top #align set.Inter_eq_univ Set.iInter_eq_univ @[simp] theorem nonempty_iUnion : (⋃ i, s i).Nonempty ↔ ∃ i, (s i).Nonempty := by simp [nonempty_iff_ne_empty] #align set.nonempty_Union Set.nonempty_iUnion --Porting note: removing `simp`. `simp` can prove it theorem nonempty_biUnion {t : Set α} {s : α → Set β} : (⋃ i ∈ t, s i).Nonempty ↔ ∃ i ∈ t, (s i).Nonempty := by simp #align set.nonempty_bUnion Set.nonempty_biUnion theorem iUnion_nonempty_index (s : Set α) (t : s.Nonempty → Set β) : ⋃ h, t h = ⋃ x ∈ s, t ⟨x, ‹_›⟩ := iSup_exists #align set.Union_nonempty_index Set.iUnion_nonempty_index end @[simp] theorem iInter_iInter_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋂ (x) (h : x = b), s x h = s b rfl := iInf_iInf_eq_left #align set.Inter_Inter_eq_left Set.iInter_iInter_eq_left @[simp] theorem iInter_iInter_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋂ (x) (h : b = x), s x h = s b rfl := iInf_iInf_eq_right #align set.Inter_Inter_eq_right Set.iInter_iInter_eq_right @[simp] theorem iUnion_iUnion_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋃ (x) (h : x = b), s x h = s b rfl := iSup_iSup_eq_left #align set.Union_Union_eq_left Set.iUnion_iUnion_eq_left @[simp] theorem iUnion_iUnion_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋃ (x) (h : b = x), s x h = s b rfl := iSup_iSup_eq_right #align set.Union_Union_eq_right Set.iUnion_iUnion_eq_right theorem iInter_or {p q : Prop} (s : p ∨ q → Set α) : ⋂ h, s h = (⋂ h : p, s (Or.inl h)) ∩ ⋂ h : q, s (Or.inr h) := iInf_or #align set.Inter_or Set.iInter_or theorem iUnion_or {p q : Prop} (s : p ∨ q → Set α) : ⋃ h, s h = (⋃ i, s (Or.inl i)) ∪ ⋃ j, s (Or.inr j) := iSup_or #align set.Union_or Set.iUnion_or /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iUnion_and {p q : Prop} (s : p ∧ q → Set α) : ⋃ h, s h = ⋃ (hp) (hq), s ⟨hp, hq⟩ := iSup_and #align set.Union_and Set.iUnion_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iInter_and {p q : Prop} (s : p ∧ q → Set α) : ⋂ h, s h = ⋂ (hp) (hq), s ⟨hp, hq⟩ := iInf_and #align set.Inter_and Set.iInter_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iUnion_comm (s : ι → ι' → Set α) : ⋃ (i) (i'), s i i' = ⋃ (i') (i), s i i' := iSup_comm #align set.Union_comm Set.iUnion_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iInter_comm (s : ι → ι' → Set α) : ⋂ (i) (i'), s i i' = ⋂ (i') (i), s i i' := iInf_comm #align set.Inter_comm Set.iInter_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iUnion₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋃ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋃ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iSup₂_comm _ #align set.Union₂_comm Set.iUnion₂_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iInter₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋂ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋂ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iInf₂_comm _ #align set.Inter₂_comm Set.iInter₂_comm @[simp] theorem biUnion_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋃ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iUnion_and, @iUnion_comm _ ι'] #align set.bUnion_and Set.biUnion_and @[simp] theorem biUnion_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋃ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iUnion_and, @iUnion_comm _ ι] #align set.bUnion_and' Set.biUnion_and' @[simp] theorem biInter_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋂ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iInter_and, @iInter_comm _ ι'] #align set.bInter_and Set.biInter_and @[simp] theorem biInter_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋂ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iInter_and, @iInter_comm _ ι] #align set.bInter_and' Set.biInter_and' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (x h) -/ @[simp] theorem iUnion_iUnion_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋃ (x) (h), s x h = s b (Or.inl rfl) ∪ ⋃ (x) (h : p x), s x (Or.inr h) := by simp only [iUnion_or, iUnion_union_distrib, iUnion_iUnion_eq_left] #align set.Union_Union_eq_or_left Set.iUnion_iUnion_eq_or_left /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (x h) -/ @[simp] theorem iInter_iInter_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋂ (x) (h), s x h = s b (Or.inl rfl) ∩ ⋂ (x) (h : p x), s x (Or.inr h) := by simp only [iInter_or, iInter_inter_distrib, iInter_iInter_eq_left] #align set.Inter_Inter_eq_or_left Set.iInter_iInter_eq_or_left /-! ### Bounded unions and intersections -/ /-- A specialization of `mem_iUnion₂`. -/ theorem mem_biUnion {s : Set α} {t : α → Set β} {x : α} {y : β} (xs : x ∈ s) (ytx : y ∈ t x) : y ∈ ⋃ x ∈ s, t x := mem_iUnion₂_of_mem xs ytx #align set.mem_bUnion Set.mem_biUnion /-- A specialization of `mem_iInter₂`. -/ theorem mem_biInter {s : Set α} {t : α → Set β} {y : β} (h : ∀ x ∈ s, y ∈ t x) : y ∈ ⋂ x ∈ s, t x := mem_iInter₂_of_mem h #align set.mem_bInter Set.mem_biInter /-- A specialization of `subset_iUnion₂`. -/ theorem subset_biUnion_of_mem {s : Set α} {u : α → Set β} {x : α} (xs : x ∈ s) : u x ⊆ ⋃ x ∈ s, u x := --Porting note: Why is this not just `subset_iUnion₂ x xs`? @subset_iUnion₂ β α (· ∈ s) (fun i _ => u i) x xs #align set.subset_bUnion_of_mem Set.subset_biUnion_of_mem /-- A specialization of `iInter₂_subset`. -/ theorem biInter_subset_of_mem {s : Set α} {t : α → Set β} {x : α} (xs : x ∈ s) : ⋂ x ∈ s, t x ⊆ t x := iInter₂_subset x xs #align set.bInter_subset_of_mem Set.biInter_subset_of_mem theorem biUnion_subset_biUnion_left {s s' : Set α} {t : α → Set β} (h : s ⊆ s') : ⋃ x ∈ s, t x ⊆ ⋃ x ∈ s', t x := iUnion₂_subset fun _ hx => subset_biUnion_of_mem <| h hx #align set.bUnion_subset_bUnion_left Set.biUnion_subset_biUnion_left theorem biInter_subset_biInter_left {s s' : Set α} {t : α → Set β} (h : s' ⊆ s) : ⋂ x ∈ s, t x ⊆ ⋂ x ∈ s', t x := subset_iInter₂ fun _ hx => biInter_subset_of_mem <| h hx #align set.bInter_subset_bInter_left Set.biInter_subset_biInter_left theorem biUnion_mono {s s' : Set α} {t t' : α → Set β} (hs : s' ⊆ s) (h : ∀ x ∈ s, t x ⊆ t' x) : ⋃ x ∈ s', t x ⊆ ⋃ x ∈ s, t' x := (biUnion_subset_biUnion_left hs).trans <| iUnion₂_mono h #align set.bUnion_mono Set.biUnion_mono theorem biInter_mono {s s' : Set α} {t t' : α → Set β} (hs : s ⊆ s') (h : ∀ x ∈ s, t x ⊆ t' x) : ⋂ x ∈ s', t x ⊆ ⋂ x ∈ s, t' x := (biInter_subset_biInter_left hs).trans <| iInter₂_mono h #align set.bInter_mono Set.biInter_mono theorem biUnion_eq_iUnion (s : Set α) (t : ∀ x ∈ s, Set β) : ⋃ x ∈ s, t x ‹_› = ⋃ x : s, t x x.2 := iSup_subtype' #align set.bUnion_eq_Union Set.biUnion_eq_iUnion theorem biInter_eq_iInter (s : Set α) (t : ∀ x ∈ s, Set β) : ⋂ x ∈ s, t x ‹_› = ⋂ x : s, t x x.2 := iInf_subtype' #align set.bInter_eq_Inter Set.biInter_eq_iInter theorem iUnion_subtype (p : α → Prop) (s : { x // p x } → Set β) : ⋃ x : { x // p x }, s x = ⋃ (x) (hx : p x), s ⟨x, hx⟩ := iSup_subtype #align set.Union_subtype Set.iUnion_subtype theorem iInter_subtype (p : α → Prop) (s : { x // p x } → Set β) : ⋂ x : { x // p x }, s x = ⋂ (x) (hx : p x), s ⟨x, hx⟩ := iInf_subtype #align set.Inter_subtype Set.iInter_subtype theorem biInter_empty (u : α → Set β) : ⋂ x ∈ (∅ : Set α), u x = univ := iInf_emptyset #align set.bInter_empty Set.biInter_empty theorem biInter_univ (u : α → Set β) : ⋂ x ∈ @univ α, u x = ⋂ x, u x := iInf_univ #align set.bInter_univ Set.biInter_univ @[simp] theorem biUnion_self (s : Set α) : ⋃ x ∈ s, s = s := Subset.antisymm (iUnion₂_subset fun _ _ => Subset.refl s) fun _ hx => mem_biUnion hx hx #align set.bUnion_self Set.biUnion_self @[simp] theorem iUnion_nonempty_self (s : Set α) : ⋃ _ : s.Nonempty, s = s := by
rw [iUnion_nonempty_index, biUnion_self]
@[simp] theorem iUnion_nonempty_self (s : Set α) : ⋃ _ : s.Nonempty, s = s := by
Mathlib.Data.Set.Lattice.1043_0.5mONj49h3SYSDwc
@[simp] theorem iUnion_nonempty_self (s : Set α) : ⋃ _ : s.Nonempty, s = s
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 a : α s : Set α t : α → Set β ⊢ ⋂ x ∈ insert a s, t x = t a ∩ ⋂ x ∈ s, t x
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩ rw [@forall_update_iff ι α _ z i y fun i t => t ∈ v i] exact ⟨y_in, fun j _ => by simpa using hz j⟩ #align set.image_projection_prod Set.image_projection_prod /-! ### Unions and intersections indexed by `Prop` -/ theorem iInter_false {s : False → Set α} : iInter s = univ := iInf_false #align set.Inter_false Set.iInter_false theorem iUnion_false {s : False → Set α} : iUnion s = ∅ := iSup_false #align set.Union_false Set.iUnion_false @[simp] theorem iInter_true {s : True → Set α} : iInter s = s trivial := iInf_true #align set.Inter_true Set.iInter_true @[simp] theorem iUnion_true {s : True → Set α} : iUnion s = s trivial := iSup_true #align set.Union_true Set.iUnion_true @[simp] theorem iInter_exists {p : ι → Prop} {f : Exists p → Set α} : ⋂ x, f x = ⋂ (i) (h : p i), f ⟨i, h⟩ := iInf_exists #align set.Inter_exists Set.iInter_exists @[simp] theorem iUnion_exists {p : ι → Prop} {f : Exists p → Set α} : ⋃ x, f x = ⋃ (i) (h : p i), f ⟨i, h⟩ := iSup_exists #align set.Union_exists Set.iUnion_exists @[simp] theorem iUnion_empty : (⋃ _ : ι, ∅ : Set α) = ∅ := iSup_bot #align set.Union_empty Set.iUnion_empty @[simp] theorem iInter_univ : (⋂ _ : ι, univ : Set α) = univ := iInf_top #align set.Inter_univ Set.iInter_univ section variable {s : ι → Set α} @[simp] theorem iUnion_eq_empty : ⋃ i, s i = ∅ ↔ ∀ i, s i = ∅ := iSup_eq_bot #align set.Union_eq_empty Set.iUnion_eq_empty @[simp] theorem iInter_eq_univ : ⋂ i, s i = univ ↔ ∀ i, s i = univ := iInf_eq_top #align set.Inter_eq_univ Set.iInter_eq_univ @[simp] theorem nonempty_iUnion : (⋃ i, s i).Nonempty ↔ ∃ i, (s i).Nonempty := by simp [nonempty_iff_ne_empty] #align set.nonempty_Union Set.nonempty_iUnion --Porting note: removing `simp`. `simp` can prove it theorem nonempty_biUnion {t : Set α} {s : α → Set β} : (⋃ i ∈ t, s i).Nonempty ↔ ∃ i ∈ t, (s i).Nonempty := by simp #align set.nonempty_bUnion Set.nonempty_biUnion theorem iUnion_nonempty_index (s : Set α) (t : s.Nonempty → Set β) : ⋃ h, t h = ⋃ x ∈ s, t ⟨x, ‹_›⟩ := iSup_exists #align set.Union_nonempty_index Set.iUnion_nonempty_index end @[simp] theorem iInter_iInter_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋂ (x) (h : x = b), s x h = s b rfl := iInf_iInf_eq_left #align set.Inter_Inter_eq_left Set.iInter_iInter_eq_left @[simp] theorem iInter_iInter_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋂ (x) (h : b = x), s x h = s b rfl := iInf_iInf_eq_right #align set.Inter_Inter_eq_right Set.iInter_iInter_eq_right @[simp] theorem iUnion_iUnion_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋃ (x) (h : x = b), s x h = s b rfl := iSup_iSup_eq_left #align set.Union_Union_eq_left Set.iUnion_iUnion_eq_left @[simp] theorem iUnion_iUnion_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋃ (x) (h : b = x), s x h = s b rfl := iSup_iSup_eq_right #align set.Union_Union_eq_right Set.iUnion_iUnion_eq_right theorem iInter_or {p q : Prop} (s : p ∨ q → Set α) : ⋂ h, s h = (⋂ h : p, s (Or.inl h)) ∩ ⋂ h : q, s (Or.inr h) := iInf_or #align set.Inter_or Set.iInter_or theorem iUnion_or {p q : Prop} (s : p ∨ q → Set α) : ⋃ h, s h = (⋃ i, s (Or.inl i)) ∪ ⋃ j, s (Or.inr j) := iSup_or #align set.Union_or Set.iUnion_or /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iUnion_and {p q : Prop} (s : p ∧ q → Set α) : ⋃ h, s h = ⋃ (hp) (hq), s ⟨hp, hq⟩ := iSup_and #align set.Union_and Set.iUnion_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iInter_and {p q : Prop} (s : p ∧ q → Set α) : ⋂ h, s h = ⋂ (hp) (hq), s ⟨hp, hq⟩ := iInf_and #align set.Inter_and Set.iInter_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iUnion_comm (s : ι → ι' → Set α) : ⋃ (i) (i'), s i i' = ⋃ (i') (i), s i i' := iSup_comm #align set.Union_comm Set.iUnion_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iInter_comm (s : ι → ι' → Set α) : ⋂ (i) (i'), s i i' = ⋂ (i') (i), s i i' := iInf_comm #align set.Inter_comm Set.iInter_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iUnion₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋃ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋃ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iSup₂_comm _ #align set.Union₂_comm Set.iUnion₂_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iInter₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋂ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋂ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iInf₂_comm _ #align set.Inter₂_comm Set.iInter₂_comm @[simp] theorem biUnion_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋃ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iUnion_and, @iUnion_comm _ ι'] #align set.bUnion_and Set.biUnion_and @[simp] theorem biUnion_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋃ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iUnion_and, @iUnion_comm _ ι] #align set.bUnion_and' Set.biUnion_and' @[simp] theorem biInter_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋂ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iInter_and, @iInter_comm _ ι'] #align set.bInter_and Set.biInter_and @[simp] theorem biInter_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋂ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iInter_and, @iInter_comm _ ι] #align set.bInter_and' Set.biInter_and' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (x h) -/ @[simp] theorem iUnion_iUnion_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋃ (x) (h), s x h = s b (Or.inl rfl) ∪ ⋃ (x) (h : p x), s x (Or.inr h) := by simp only [iUnion_or, iUnion_union_distrib, iUnion_iUnion_eq_left] #align set.Union_Union_eq_or_left Set.iUnion_iUnion_eq_or_left /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (x h) -/ @[simp] theorem iInter_iInter_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋂ (x) (h), s x h = s b (Or.inl rfl) ∩ ⋂ (x) (h : p x), s x (Or.inr h) := by simp only [iInter_or, iInter_inter_distrib, iInter_iInter_eq_left] #align set.Inter_Inter_eq_or_left Set.iInter_iInter_eq_or_left /-! ### Bounded unions and intersections -/ /-- A specialization of `mem_iUnion₂`. -/ theorem mem_biUnion {s : Set α} {t : α → Set β} {x : α} {y : β} (xs : x ∈ s) (ytx : y ∈ t x) : y ∈ ⋃ x ∈ s, t x := mem_iUnion₂_of_mem xs ytx #align set.mem_bUnion Set.mem_biUnion /-- A specialization of `mem_iInter₂`. -/ theorem mem_biInter {s : Set α} {t : α → Set β} {y : β} (h : ∀ x ∈ s, y ∈ t x) : y ∈ ⋂ x ∈ s, t x := mem_iInter₂_of_mem h #align set.mem_bInter Set.mem_biInter /-- A specialization of `subset_iUnion₂`. -/ theorem subset_biUnion_of_mem {s : Set α} {u : α → Set β} {x : α} (xs : x ∈ s) : u x ⊆ ⋃ x ∈ s, u x := --Porting note: Why is this not just `subset_iUnion₂ x xs`? @subset_iUnion₂ β α (· ∈ s) (fun i _ => u i) x xs #align set.subset_bUnion_of_mem Set.subset_biUnion_of_mem /-- A specialization of `iInter₂_subset`. -/ theorem biInter_subset_of_mem {s : Set α} {t : α → Set β} {x : α} (xs : x ∈ s) : ⋂ x ∈ s, t x ⊆ t x := iInter₂_subset x xs #align set.bInter_subset_of_mem Set.biInter_subset_of_mem theorem biUnion_subset_biUnion_left {s s' : Set α} {t : α → Set β} (h : s ⊆ s') : ⋃ x ∈ s, t x ⊆ ⋃ x ∈ s', t x := iUnion₂_subset fun _ hx => subset_biUnion_of_mem <| h hx #align set.bUnion_subset_bUnion_left Set.biUnion_subset_biUnion_left theorem biInter_subset_biInter_left {s s' : Set α} {t : α → Set β} (h : s' ⊆ s) : ⋂ x ∈ s, t x ⊆ ⋂ x ∈ s', t x := subset_iInter₂ fun _ hx => biInter_subset_of_mem <| h hx #align set.bInter_subset_bInter_left Set.biInter_subset_biInter_left theorem biUnion_mono {s s' : Set α} {t t' : α → Set β} (hs : s' ⊆ s) (h : ∀ x ∈ s, t x ⊆ t' x) : ⋃ x ∈ s', t x ⊆ ⋃ x ∈ s, t' x := (biUnion_subset_biUnion_left hs).trans <| iUnion₂_mono h #align set.bUnion_mono Set.biUnion_mono theorem biInter_mono {s s' : Set α} {t t' : α → Set β} (hs : s ⊆ s') (h : ∀ x ∈ s, t x ⊆ t' x) : ⋂ x ∈ s', t x ⊆ ⋂ x ∈ s, t' x := (biInter_subset_biInter_left hs).trans <| iInter₂_mono h #align set.bInter_mono Set.biInter_mono theorem biUnion_eq_iUnion (s : Set α) (t : ∀ x ∈ s, Set β) : ⋃ x ∈ s, t x ‹_› = ⋃ x : s, t x x.2 := iSup_subtype' #align set.bUnion_eq_Union Set.biUnion_eq_iUnion theorem biInter_eq_iInter (s : Set α) (t : ∀ x ∈ s, Set β) : ⋂ x ∈ s, t x ‹_› = ⋂ x : s, t x x.2 := iInf_subtype' #align set.bInter_eq_Inter Set.biInter_eq_iInter theorem iUnion_subtype (p : α → Prop) (s : { x // p x } → Set β) : ⋃ x : { x // p x }, s x = ⋃ (x) (hx : p x), s ⟨x, hx⟩ := iSup_subtype #align set.Union_subtype Set.iUnion_subtype theorem iInter_subtype (p : α → Prop) (s : { x // p x } → Set β) : ⋂ x : { x // p x }, s x = ⋂ (x) (hx : p x), s ⟨x, hx⟩ := iInf_subtype #align set.Inter_subtype Set.iInter_subtype theorem biInter_empty (u : α → Set β) : ⋂ x ∈ (∅ : Set α), u x = univ := iInf_emptyset #align set.bInter_empty Set.biInter_empty theorem biInter_univ (u : α → Set β) : ⋂ x ∈ @univ α, u x = ⋂ x, u x := iInf_univ #align set.bInter_univ Set.biInter_univ @[simp] theorem biUnion_self (s : Set α) : ⋃ x ∈ s, s = s := Subset.antisymm (iUnion₂_subset fun _ _ => Subset.refl s) fun _ hx => mem_biUnion hx hx #align set.bUnion_self Set.biUnion_self @[simp] theorem iUnion_nonempty_self (s : Set α) : ⋃ _ : s.Nonempty, s = s := by rw [iUnion_nonempty_index, biUnion_self] #align set.Union_nonempty_self Set.iUnion_nonempty_self theorem biInter_singleton (a : α) (s : α → Set β) : ⋂ x ∈ ({a} : Set α), s x = s a := iInf_singleton #align set.bInter_singleton Set.biInter_singleton theorem biInter_union (s t : Set α) (u : α → Set β) : ⋂ x ∈ s ∪ t, u x = (⋂ x ∈ s, u x) ∩ ⋂ x ∈ t, u x := iInf_union #align set.bInter_union Set.biInter_union theorem biInter_insert (a : α) (s : Set α) (t : α → Set β) : ⋂ x ∈ insert a s, t x = t a ∩ ⋂ x ∈ s, t x := by
simp
theorem biInter_insert (a : α) (s : Set α) (t : α → Set β) : ⋂ x ∈ insert a s, t x = t a ∩ ⋂ x ∈ s, t x := by
Mathlib.Data.Set.Lattice.1057_0.5mONj49h3SYSDwc
theorem biInter_insert (a : α) (s : Set α) (t : α → Set β) : ⋂ x ∈ insert a s, t x = t a ∩ ⋂ x ∈ s, t x
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 a b : α s : α → Set β ⊢ ⋂ x ∈ {a, b}, s x = s a ∩ s b
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩ rw [@forall_update_iff ι α _ z i y fun i t => t ∈ v i] exact ⟨y_in, fun j _ => by simpa using hz j⟩ #align set.image_projection_prod Set.image_projection_prod /-! ### Unions and intersections indexed by `Prop` -/ theorem iInter_false {s : False → Set α} : iInter s = univ := iInf_false #align set.Inter_false Set.iInter_false theorem iUnion_false {s : False → Set α} : iUnion s = ∅ := iSup_false #align set.Union_false Set.iUnion_false @[simp] theorem iInter_true {s : True → Set α} : iInter s = s trivial := iInf_true #align set.Inter_true Set.iInter_true @[simp] theorem iUnion_true {s : True → Set α} : iUnion s = s trivial := iSup_true #align set.Union_true Set.iUnion_true @[simp] theorem iInter_exists {p : ι → Prop} {f : Exists p → Set α} : ⋂ x, f x = ⋂ (i) (h : p i), f ⟨i, h⟩ := iInf_exists #align set.Inter_exists Set.iInter_exists @[simp] theorem iUnion_exists {p : ι → Prop} {f : Exists p → Set α} : ⋃ x, f x = ⋃ (i) (h : p i), f ⟨i, h⟩ := iSup_exists #align set.Union_exists Set.iUnion_exists @[simp] theorem iUnion_empty : (⋃ _ : ι, ∅ : Set α) = ∅ := iSup_bot #align set.Union_empty Set.iUnion_empty @[simp] theorem iInter_univ : (⋂ _ : ι, univ : Set α) = univ := iInf_top #align set.Inter_univ Set.iInter_univ section variable {s : ι → Set α} @[simp] theorem iUnion_eq_empty : ⋃ i, s i = ∅ ↔ ∀ i, s i = ∅ := iSup_eq_bot #align set.Union_eq_empty Set.iUnion_eq_empty @[simp] theorem iInter_eq_univ : ⋂ i, s i = univ ↔ ∀ i, s i = univ := iInf_eq_top #align set.Inter_eq_univ Set.iInter_eq_univ @[simp] theorem nonempty_iUnion : (⋃ i, s i).Nonempty ↔ ∃ i, (s i).Nonempty := by simp [nonempty_iff_ne_empty] #align set.nonempty_Union Set.nonempty_iUnion --Porting note: removing `simp`. `simp` can prove it theorem nonempty_biUnion {t : Set α} {s : α → Set β} : (⋃ i ∈ t, s i).Nonempty ↔ ∃ i ∈ t, (s i).Nonempty := by simp #align set.nonempty_bUnion Set.nonempty_biUnion theorem iUnion_nonempty_index (s : Set α) (t : s.Nonempty → Set β) : ⋃ h, t h = ⋃ x ∈ s, t ⟨x, ‹_›⟩ := iSup_exists #align set.Union_nonempty_index Set.iUnion_nonempty_index end @[simp] theorem iInter_iInter_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋂ (x) (h : x = b), s x h = s b rfl := iInf_iInf_eq_left #align set.Inter_Inter_eq_left Set.iInter_iInter_eq_left @[simp] theorem iInter_iInter_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋂ (x) (h : b = x), s x h = s b rfl := iInf_iInf_eq_right #align set.Inter_Inter_eq_right Set.iInter_iInter_eq_right @[simp] theorem iUnion_iUnion_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋃ (x) (h : x = b), s x h = s b rfl := iSup_iSup_eq_left #align set.Union_Union_eq_left Set.iUnion_iUnion_eq_left @[simp] theorem iUnion_iUnion_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋃ (x) (h : b = x), s x h = s b rfl := iSup_iSup_eq_right #align set.Union_Union_eq_right Set.iUnion_iUnion_eq_right theorem iInter_or {p q : Prop} (s : p ∨ q → Set α) : ⋂ h, s h = (⋂ h : p, s (Or.inl h)) ∩ ⋂ h : q, s (Or.inr h) := iInf_or #align set.Inter_or Set.iInter_or theorem iUnion_or {p q : Prop} (s : p ∨ q → Set α) : ⋃ h, s h = (⋃ i, s (Or.inl i)) ∪ ⋃ j, s (Or.inr j) := iSup_or #align set.Union_or Set.iUnion_or /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iUnion_and {p q : Prop} (s : p ∧ q → Set α) : ⋃ h, s h = ⋃ (hp) (hq), s ⟨hp, hq⟩ := iSup_and #align set.Union_and Set.iUnion_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iInter_and {p q : Prop} (s : p ∧ q → Set α) : ⋂ h, s h = ⋂ (hp) (hq), s ⟨hp, hq⟩ := iInf_and #align set.Inter_and Set.iInter_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iUnion_comm (s : ι → ι' → Set α) : ⋃ (i) (i'), s i i' = ⋃ (i') (i), s i i' := iSup_comm #align set.Union_comm Set.iUnion_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iInter_comm (s : ι → ι' → Set α) : ⋂ (i) (i'), s i i' = ⋂ (i') (i), s i i' := iInf_comm #align set.Inter_comm Set.iInter_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iUnion₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋃ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋃ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iSup₂_comm _ #align set.Union₂_comm Set.iUnion₂_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iInter₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋂ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋂ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iInf₂_comm _ #align set.Inter₂_comm Set.iInter₂_comm @[simp] theorem biUnion_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋃ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iUnion_and, @iUnion_comm _ ι'] #align set.bUnion_and Set.biUnion_and @[simp] theorem biUnion_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋃ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iUnion_and, @iUnion_comm _ ι] #align set.bUnion_and' Set.biUnion_and' @[simp] theorem biInter_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋂ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iInter_and, @iInter_comm _ ι'] #align set.bInter_and Set.biInter_and @[simp] theorem biInter_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋂ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iInter_and, @iInter_comm _ ι] #align set.bInter_and' Set.biInter_and' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (x h) -/ @[simp] theorem iUnion_iUnion_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋃ (x) (h), s x h = s b (Or.inl rfl) ∪ ⋃ (x) (h : p x), s x (Or.inr h) := by simp only [iUnion_or, iUnion_union_distrib, iUnion_iUnion_eq_left] #align set.Union_Union_eq_or_left Set.iUnion_iUnion_eq_or_left /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (x h) -/ @[simp] theorem iInter_iInter_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋂ (x) (h), s x h = s b (Or.inl rfl) ∩ ⋂ (x) (h : p x), s x (Or.inr h) := by simp only [iInter_or, iInter_inter_distrib, iInter_iInter_eq_left] #align set.Inter_Inter_eq_or_left Set.iInter_iInter_eq_or_left /-! ### Bounded unions and intersections -/ /-- A specialization of `mem_iUnion₂`. -/ theorem mem_biUnion {s : Set α} {t : α → Set β} {x : α} {y : β} (xs : x ∈ s) (ytx : y ∈ t x) : y ∈ ⋃ x ∈ s, t x := mem_iUnion₂_of_mem xs ytx #align set.mem_bUnion Set.mem_biUnion /-- A specialization of `mem_iInter₂`. -/ theorem mem_biInter {s : Set α} {t : α → Set β} {y : β} (h : ∀ x ∈ s, y ∈ t x) : y ∈ ⋂ x ∈ s, t x := mem_iInter₂_of_mem h #align set.mem_bInter Set.mem_biInter /-- A specialization of `subset_iUnion₂`. -/ theorem subset_biUnion_of_mem {s : Set α} {u : α → Set β} {x : α} (xs : x ∈ s) : u x ⊆ ⋃ x ∈ s, u x := --Porting note: Why is this not just `subset_iUnion₂ x xs`? @subset_iUnion₂ β α (· ∈ s) (fun i _ => u i) x xs #align set.subset_bUnion_of_mem Set.subset_biUnion_of_mem /-- A specialization of `iInter₂_subset`. -/ theorem biInter_subset_of_mem {s : Set α} {t : α → Set β} {x : α} (xs : x ∈ s) : ⋂ x ∈ s, t x ⊆ t x := iInter₂_subset x xs #align set.bInter_subset_of_mem Set.biInter_subset_of_mem theorem biUnion_subset_biUnion_left {s s' : Set α} {t : α → Set β} (h : s ⊆ s') : ⋃ x ∈ s, t x ⊆ ⋃ x ∈ s', t x := iUnion₂_subset fun _ hx => subset_biUnion_of_mem <| h hx #align set.bUnion_subset_bUnion_left Set.biUnion_subset_biUnion_left theorem biInter_subset_biInter_left {s s' : Set α} {t : α → Set β} (h : s' ⊆ s) : ⋂ x ∈ s, t x ⊆ ⋂ x ∈ s', t x := subset_iInter₂ fun _ hx => biInter_subset_of_mem <| h hx #align set.bInter_subset_bInter_left Set.biInter_subset_biInter_left theorem biUnion_mono {s s' : Set α} {t t' : α → Set β} (hs : s' ⊆ s) (h : ∀ x ∈ s, t x ⊆ t' x) : ⋃ x ∈ s', t x ⊆ ⋃ x ∈ s, t' x := (biUnion_subset_biUnion_left hs).trans <| iUnion₂_mono h #align set.bUnion_mono Set.biUnion_mono theorem biInter_mono {s s' : Set α} {t t' : α → Set β} (hs : s ⊆ s') (h : ∀ x ∈ s, t x ⊆ t' x) : ⋂ x ∈ s', t x ⊆ ⋂ x ∈ s, t' x := (biInter_subset_biInter_left hs).trans <| iInter₂_mono h #align set.bInter_mono Set.biInter_mono theorem biUnion_eq_iUnion (s : Set α) (t : ∀ x ∈ s, Set β) : ⋃ x ∈ s, t x ‹_› = ⋃ x : s, t x x.2 := iSup_subtype' #align set.bUnion_eq_Union Set.biUnion_eq_iUnion theorem biInter_eq_iInter (s : Set α) (t : ∀ x ∈ s, Set β) : ⋂ x ∈ s, t x ‹_› = ⋂ x : s, t x x.2 := iInf_subtype' #align set.bInter_eq_Inter Set.biInter_eq_iInter theorem iUnion_subtype (p : α → Prop) (s : { x // p x } → Set β) : ⋃ x : { x // p x }, s x = ⋃ (x) (hx : p x), s ⟨x, hx⟩ := iSup_subtype #align set.Union_subtype Set.iUnion_subtype theorem iInter_subtype (p : α → Prop) (s : { x // p x } → Set β) : ⋂ x : { x // p x }, s x = ⋂ (x) (hx : p x), s ⟨x, hx⟩ := iInf_subtype #align set.Inter_subtype Set.iInter_subtype theorem biInter_empty (u : α → Set β) : ⋂ x ∈ (∅ : Set α), u x = univ := iInf_emptyset #align set.bInter_empty Set.biInter_empty theorem biInter_univ (u : α → Set β) : ⋂ x ∈ @univ α, u x = ⋂ x, u x := iInf_univ #align set.bInter_univ Set.biInter_univ @[simp] theorem biUnion_self (s : Set α) : ⋃ x ∈ s, s = s := Subset.antisymm (iUnion₂_subset fun _ _ => Subset.refl s) fun _ hx => mem_biUnion hx hx #align set.bUnion_self Set.biUnion_self @[simp] theorem iUnion_nonempty_self (s : Set α) : ⋃ _ : s.Nonempty, s = s := by rw [iUnion_nonempty_index, biUnion_self] #align set.Union_nonempty_self Set.iUnion_nonempty_self theorem biInter_singleton (a : α) (s : α → Set β) : ⋂ x ∈ ({a} : Set α), s x = s a := iInf_singleton #align set.bInter_singleton Set.biInter_singleton theorem biInter_union (s t : Set α) (u : α → Set β) : ⋂ x ∈ s ∪ t, u x = (⋂ x ∈ s, u x) ∩ ⋂ x ∈ t, u x := iInf_union #align set.bInter_union Set.biInter_union theorem biInter_insert (a : α) (s : Set α) (t : α → Set β) : ⋂ x ∈ insert a s, t x = t a ∩ ⋂ x ∈ s, t x := by simp #align set.bInter_insert Set.biInter_insert theorem biInter_pair (a b : α) (s : α → Set β) : ⋂ x ∈ ({a, b} : Set α), s x = s a ∩ s b := by
rw [biInter_insert, biInter_singleton]
theorem biInter_pair (a b : α) (s : α → Set β) : ⋂ x ∈ ({a, b} : Set α), s x = s a ∩ s b := by
Mathlib.Data.Set.Lattice.1061_0.5mONj49h3SYSDwc
theorem biInter_pair (a b : α) (s : α → Set β) : ⋂ x ∈ ({a, b} : Set α), s x = s a ∩ s b
Mathlib_Data_Set_Lattice
α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι✝ → Sort u_7 κ₁ : ι✝ → Sort u_8 κ₂ : ι✝ → Sort u_9 κ' : ι' → Sort u_10 ι : Type u_11 α : Type u_12 s : Set ι hs : Set.Nonempty s f : ι → Set α t : Set α ⊢ ⋂ i ∈ s, f i ∩ t = (⋂ i ∈ s, f i) ∩ t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩ rw [@forall_update_iff ι α _ z i y fun i t => t ∈ v i] exact ⟨y_in, fun j _ => by simpa using hz j⟩ #align set.image_projection_prod Set.image_projection_prod /-! ### Unions and intersections indexed by `Prop` -/ theorem iInter_false {s : False → Set α} : iInter s = univ := iInf_false #align set.Inter_false Set.iInter_false theorem iUnion_false {s : False → Set α} : iUnion s = ∅ := iSup_false #align set.Union_false Set.iUnion_false @[simp] theorem iInter_true {s : True → Set α} : iInter s = s trivial := iInf_true #align set.Inter_true Set.iInter_true @[simp] theorem iUnion_true {s : True → Set α} : iUnion s = s trivial := iSup_true #align set.Union_true Set.iUnion_true @[simp] theorem iInter_exists {p : ι → Prop} {f : Exists p → Set α} : ⋂ x, f x = ⋂ (i) (h : p i), f ⟨i, h⟩ := iInf_exists #align set.Inter_exists Set.iInter_exists @[simp] theorem iUnion_exists {p : ι → Prop} {f : Exists p → Set α} : ⋃ x, f x = ⋃ (i) (h : p i), f ⟨i, h⟩ := iSup_exists #align set.Union_exists Set.iUnion_exists @[simp] theorem iUnion_empty : (⋃ _ : ι, ∅ : Set α) = ∅ := iSup_bot #align set.Union_empty Set.iUnion_empty @[simp] theorem iInter_univ : (⋂ _ : ι, univ : Set α) = univ := iInf_top #align set.Inter_univ Set.iInter_univ section variable {s : ι → Set α} @[simp] theorem iUnion_eq_empty : ⋃ i, s i = ∅ ↔ ∀ i, s i = ∅ := iSup_eq_bot #align set.Union_eq_empty Set.iUnion_eq_empty @[simp] theorem iInter_eq_univ : ⋂ i, s i = univ ↔ ∀ i, s i = univ := iInf_eq_top #align set.Inter_eq_univ Set.iInter_eq_univ @[simp] theorem nonempty_iUnion : (⋃ i, s i).Nonempty ↔ ∃ i, (s i).Nonempty := by simp [nonempty_iff_ne_empty] #align set.nonempty_Union Set.nonempty_iUnion --Porting note: removing `simp`. `simp` can prove it theorem nonempty_biUnion {t : Set α} {s : α → Set β} : (⋃ i ∈ t, s i).Nonempty ↔ ∃ i ∈ t, (s i).Nonempty := by simp #align set.nonempty_bUnion Set.nonempty_biUnion theorem iUnion_nonempty_index (s : Set α) (t : s.Nonempty → Set β) : ⋃ h, t h = ⋃ x ∈ s, t ⟨x, ‹_›⟩ := iSup_exists #align set.Union_nonempty_index Set.iUnion_nonempty_index end @[simp] theorem iInter_iInter_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋂ (x) (h : x = b), s x h = s b rfl := iInf_iInf_eq_left #align set.Inter_Inter_eq_left Set.iInter_iInter_eq_left @[simp] theorem iInter_iInter_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋂ (x) (h : b = x), s x h = s b rfl := iInf_iInf_eq_right #align set.Inter_Inter_eq_right Set.iInter_iInter_eq_right @[simp] theorem iUnion_iUnion_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋃ (x) (h : x = b), s x h = s b rfl := iSup_iSup_eq_left #align set.Union_Union_eq_left Set.iUnion_iUnion_eq_left @[simp] theorem iUnion_iUnion_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋃ (x) (h : b = x), s x h = s b rfl := iSup_iSup_eq_right #align set.Union_Union_eq_right Set.iUnion_iUnion_eq_right theorem iInter_or {p q : Prop} (s : p ∨ q → Set α) : ⋂ h, s h = (⋂ h : p, s (Or.inl h)) ∩ ⋂ h : q, s (Or.inr h) := iInf_or #align set.Inter_or Set.iInter_or theorem iUnion_or {p q : Prop} (s : p ∨ q → Set α) : ⋃ h, s h = (⋃ i, s (Or.inl i)) ∪ ⋃ j, s (Or.inr j) := iSup_or #align set.Union_or Set.iUnion_or /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iUnion_and {p q : Prop} (s : p ∧ q → Set α) : ⋃ h, s h = ⋃ (hp) (hq), s ⟨hp, hq⟩ := iSup_and #align set.Union_and Set.iUnion_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iInter_and {p q : Prop} (s : p ∧ q → Set α) : ⋂ h, s h = ⋂ (hp) (hq), s ⟨hp, hq⟩ := iInf_and #align set.Inter_and Set.iInter_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iUnion_comm (s : ι → ι' → Set α) : ⋃ (i) (i'), s i i' = ⋃ (i') (i), s i i' := iSup_comm #align set.Union_comm Set.iUnion_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iInter_comm (s : ι → ι' → Set α) : ⋂ (i) (i'), s i i' = ⋂ (i') (i), s i i' := iInf_comm #align set.Inter_comm Set.iInter_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iUnion₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋃ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋃ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iSup₂_comm _ #align set.Union₂_comm Set.iUnion₂_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iInter₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋂ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋂ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iInf₂_comm _ #align set.Inter₂_comm Set.iInter₂_comm @[simp] theorem biUnion_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋃ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iUnion_and, @iUnion_comm _ ι'] #align set.bUnion_and Set.biUnion_and @[simp] theorem biUnion_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋃ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iUnion_and, @iUnion_comm _ ι] #align set.bUnion_and' Set.biUnion_and' @[simp] theorem biInter_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋂ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iInter_and, @iInter_comm _ ι'] #align set.bInter_and Set.biInter_and @[simp] theorem biInter_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋂ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iInter_and, @iInter_comm _ ι] #align set.bInter_and' Set.biInter_and' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (x h) -/ @[simp] theorem iUnion_iUnion_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋃ (x) (h), s x h = s b (Or.inl rfl) ∪ ⋃ (x) (h : p x), s x (Or.inr h) := by simp only [iUnion_or, iUnion_union_distrib, iUnion_iUnion_eq_left] #align set.Union_Union_eq_or_left Set.iUnion_iUnion_eq_or_left /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (x h) -/ @[simp] theorem iInter_iInter_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋂ (x) (h), s x h = s b (Or.inl rfl) ∩ ⋂ (x) (h : p x), s x (Or.inr h) := by simp only [iInter_or, iInter_inter_distrib, iInter_iInter_eq_left] #align set.Inter_Inter_eq_or_left Set.iInter_iInter_eq_or_left /-! ### Bounded unions and intersections -/ /-- A specialization of `mem_iUnion₂`. -/ theorem mem_biUnion {s : Set α} {t : α → Set β} {x : α} {y : β} (xs : x ∈ s) (ytx : y ∈ t x) : y ∈ ⋃ x ∈ s, t x := mem_iUnion₂_of_mem xs ytx #align set.mem_bUnion Set.mem_biUnion /-- A specialization of `mem_iInter₂`. -/ theorem mem_biInter {s : Set α} {t : α → Set β} {y : β} (h : ∀ x ∈ s, y ∈ t x) : y ∈ ⋂ x ∈ s, t x := mem_iInter₂_of_mem h #align set.mem_bInter Set.mem_biInter /-- A specialization of `subset_iUnion₂`. -/ theorem subset_biUnion_of_mem {s : Set α} {u : α → Set β} {x : α} (xs : x ∈ s) : u x ⊆ ⋃ x ∈ s, u x := --Porting note: Why is this not just `subset_iUnion₂ x xs`? @subset_iUnion₂ β α (· ∈ s) (fun i _ => u i) x xs #align set.subset_bUnion_of_mem Set.subset_biUnion_of_mem /-- A specialization of `iInter₂_subset`. -/ theorem biInter_subset_of_mem {s : Set α} {t : α → Set β} {x : α} (xs : x ∈ s) : ⋂ x ∈ s, t x ⊆ t x := iInter₂_subset x xs #align set.bInter_subset_of_mem Set.biInter_subset_of_mem theorem biUnion_subset_biUnion_left {s s' : Set α} {t : α → Set β} (h : s ⊆ s') : ⋃ x ∈ s, t x ⊆ ⋃ x ∈ s', t x := iUnion₂_subset fun _ hx => subset_biUnion_of_mem <| h hx #align set.bUnion_subset_bUnion_left Set.biUnion_subset_biUnion_left theorem biInter_subset_biInter_left {s s' : Set α} {t : α → Set β} (h : s' ⊆ s) : ⋂ x ∈ s, t x ⊆ ⋂ x ∈ s', t x := subset_iInter₂ fun _ hx => biInter_subset_of_mem <| h hx #align set.bInter_subset_bInter_left Set.biInter_subset_biInter_left theorem biUnion_mono {s s' : Set α} {t t' : α → Set β} (hs : s' ⊆ s) (h : ∀ x ∈ s, t x ⊆ t' x) : ⋃ x ∈ s', t x ⊆ ⋃ x ∈ s, t' x := (biUnion_subset_biUnion_left hs).trans <| iUnion₂_mono h #align set.bUnion_mono Set.biUnion_mono theorem biInter_mono {s s' : Set α} {t t' : α → Set β} (hs : s ⊆ s') (h : ∀ x ∈ s, t x ⊆ t' x) : ⋂ x ∈ s', t x ⊆ ⋂ x ∈ s, t' x := (biInter_subset_biInter_left hs).trans <| iInter₂_mono h #align set.bInter_mono Set.biInter_mono theorem biUnion_eq_iUnion (s : Set α) (t : ∀ x ∈ s, Set β) : ⋃ x ∈ s, t x ‹_› = ⋃ x : s, t x x.2 := iSup_subtype' #align set.bUnion_eq_Union Set.biUnion_eq_iUnion theorem biInter_eq_iInter (s : Set α) (t : ∀ x ∈ s, Set β) : ⋂ x ∈ s, t x ‹_› = ⋂ x : s, t x x.2 := iInf_subtype' #align set.bInter_eq_Inter Set.biInter_eq_iInter theorem iUnion_subtype (p : α → Prop) (s : { x // p x } → Set β) : ⋃ x : { x // p x }, s x = ⋃ (x) (hx : p x), s ⟨x, hx⟩ := iSup_subtype #align set.Union_subtype Set.iUnion_subtype theorem iInter_subtype (p : α → Prop) (s : { x // p x } → Set β) : ⋂ x : { x // p x }, s x = ⋂ (x) (hx : p x), s ⟨x, hx⟩ := iInf_subtype #align set.Inter_subtype Set.iInter_subtype theorem biInter_empty (u : α → Set β) : ⋂ x ∈ (∅ : Set α), u x = univ := iInf_emptyset #align set.bInter_empty Set.biInter_empty theorem biInter_univ (u : α → Set β) : ⋂ x ∈ @univ α, u x = ⋂ x, u x := iInf_univ #align set.bInter_univ Set.biInter_univ @[simp] theorem biUnion_self (s : Set α) : ⋃ x ∈ s, s = s := Subset.antisymm (iUnion₂_subset fun _ _ => Subset.refl s) fun _ hx => mem_biUnion hx hx #align set.bUnion_self Set.biUnion_self @[simp] theorem iUnion_nonempty_self (s : Set α) : ⋃ _ : s.Nonempty, s = s := by rw [iUnion_nonempty_index, biUnion_self] #align set.Union_nonempty_self Set.iUnion_nonempty_self theorem biInter_singleton (a : α) (s : α → Set β) : ⋂ x ∈ ({a} : Set α), s x = s a := iInf_singleton #align set.bInter_singleton Set.biInter_singleton theorem biInter_union (s t : Set α) (u : α → Set β) : ⋂ x ∈ s ∪ t, u x = (⋂ x ∈ s, u x) ∩ ⋂ x ∈ t, u x := iInf_union #align set.bInter_union Set.biInter_union theorem biInter_insert (a : α) (s : Set α) (t : α → Set β) : ⋂ x ∈ insert a s, t x = t a ∩ ⋂ x ∈ s, t x := by simp #align set.bInter_insert Set.biInter_insert theorem biInter_pair (a b : α) (s : α → Set β) : ⋂ x ∈ ({a, b} : Set α), s x = s a ∩ s b := by rw [biInter_insert, biInter_singleton] #align set.bInter_pair Set.biInter_pair theorem biInter_inter {ι α : Type*} {s : Set ι} (hs : s.Nonempty) (f : ι → Set α) (t : Set α) : ⋂ i ∈ s, f i ∩ t = (⋂ i ∈ s, f i) ∩ t := by
haveI : Nonempty s := hs.to_subtype
theorem biInter_inter {ι α : Type*} {s : Set ι} (hs : s.Nonempty) (f : ι → Set α) (t : Set α) : ⋂ i ∈ s, f i ∩ t = (⋂ i ∈ s, f i) ∩ t := by
Mathlib.Data.Set.Lattice.1065_0.5mONj49h3SYSDwc
theorem biInter_inter {ι α : Type*} {s : Set ι} (hs : s.Nonempty) (f : ι → Set α) (t : Set α) : ⋂ i ∈ s, f i ∩ t = (⋂ i ∈ s, f i) ∩ t
Mathlib_Data_Set_Lattice
α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι✝ → Sort u_7 κ₁ : ι✝ → Sort u_8 κ₂ : ι✝ → Sort u_9 κ' : ι' → Sort u_10 ι : Type u_11 α : Type u_12 s : Set ι hs : Set.Nonempty s f : ι → Set α t : Set α this : Nonempty ↑s ⊢ ⋂ i ∈ s, f i ∩ t = (⋂ i ∈ s, f i) ∩ t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩ rw [@forall_update_iff ι α _ z i y fun i t => t ∈ v i] exact ⟨y_in, fun j _ => by simpa using hz j⟩ #align set.image_projection_prod Set.image_projection_prod /-! ### Unions and intersections indexed by `Prop` -/ theorem iInter_false {s : False → Set α} : iInter s = univ := iInf_false #align set.Inter_false Set.iInter_false theorem iUnion_false {s : False → Set α} : iUnion s = ∅ := iSup_false #align set.Union_false Set.iUnion_false @[simp] theorem iInter_true {s : True → Set α} : iInter s = s trivial := iInf_true #align set.Inter_true Set.iInter_true @[simp] theorem iUnion_true {s : True → Set α} : iUnion s = s trivial := iSup_true #align set.Union_true Set.iUnion_true @[simp] theorem iInter_exists {p : ι → Prop} {f : Exists p → Set α} : ⋂ x, f x = ⋂ (i) (h : p i), f ⟨i, h⟩ := iInf_exists #align set.Inter_exists Set.iInter_exists @[simp] theorem iUnion_exists {p : ι → Prop} {f : Exists p → Set α} : ⋃ x, f x = ⋃ (i) (h : p i), f ⟨i, h⟩ := iSup_exists #align set.Union_exists Set.iUnion_exists @[simp] theorem iUnion_empty : (⋃ _ : ι, ∅ : Set α) = ∅ := iSup_bot #align set.Union_empty Set.iUnion_empty @[simp] theorem iInter_univ : (⋂ _ : ι, univ : Set α) = univ := iInf_top #align set.Inter_univ Set.iInter_univ section variable {s : ι → Set α} @[simp] theorem iUnion_eq_empty : ⋃ i, s i = ∅ ↔ ∀ i, s i = ∅ := iSup_eq_bot #align set.Union_eq_empty Set.iUnion_eq_empty @[simp] theorem iInter_eq_univ : ⋂ i, s i = univ ↔ ∀ i, s i = univ := iInf_eq_top #align set.Inter_eq_univ Set.iInter_eq_univ @[simp] theorem nonempty_iUnion : (⋃ i, s i).Nonempty ↔ ∃ i, (s i).Nonempty := by simp [nonempty_iff_ne_empty] #align set.nonempty_Union Set.nonempty_iUnion --Porting note: removing `simp`. `simp` can prove it theorem nonempty_biUnion {t : Set α} {s : α → Set β} : (⋃ i ∈ t, s i).Nonempty ↔ ∃ i ∈ t, (s i).Nonempty := by simp #align set.nonempty_bUnion Set.nonempty_biUnion theorem iUnion_nonempty_index (s : Set α) (t : s.Nonempty → Set β) : ⋃ h, t h = ⋃ x ∈ s, t ⟨x, ‹_›⟩ := iSup_exists #align set.Union_nonempty_index Set.iUnion_nonempty_index end @[simp] theorem iInter_iInter_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋂ (x) (h : x = b), s x h = s b rfl := iInf_iInf_eq_left #align set.Inter_Inter_eq_left Set.iInter_iInter_eq_left @[simp] theorem iInter_iInter_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋂ (x) (h : b = x), s x h = s b rfl := iInf_iInf_eq_right #align set.Inter_Inter_eq_right Set.iInter_iInter_eq_right @[simp] theorem iUnion_iUnion_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋃ (x) (h : x = b), s x h = s b rfl := iSup_iSup_eq_left #align set.Union_Union_eq_left Set.iUnion_iUnion_eq_left @[simp] theorem iUnion_iUnion_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋃ (x) (h : b = x), s x h = s b rfl := iSup_iSup_eq_right #align set.Union_Union_eq_right Set.iUnion_iUnion_eq_right theorem iInter_or {p q : Prop} (s : p ∨ q → Set α) : ⋂ h, s h = (⋂ h : p, s (Or.inl h)) ∩ ⋂ h : q, s (Or.inr h) := iInf_or #align set.Inter_or Set.iInter_or theorem iUnion_or {p q : Prop} (s : p ∨ q → Set α) : ⋃ h, s h = (⋃ i, s (Or.inl i)) ∪ ⋃ j, s (Or.inr j) := iSup_or #align set.Union_or Set.iUnion_or /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iUnion_and {p q : Prop} (s : p ∧ q → Set α) : ⋃ h, s h = ⋃ (hp) (hq), s ⟨hp, hq⟩ := iSup_and #align set.Union_and Set.iUnion_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iInter_and {p q : Prop} (s : p ∧ q → Set α) : ⋂ h, s h = ⋂ (hp) (hq), s ⟨hp, hq⟩ := iInf_and #align set.Inter_and Set.iInter_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iUnion_comm (s : ι → ι' → Set α) : ⋃ (i) (i'), s i i' = ⋃ (i') (i), s i i' := iSup_comm #align set.Union_comm Set.iUnion_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iInter_comm (s : ι → ι' → Set α) : ⋂ (i) (i'), s i i' = ⋂ (i') (i), s i i' := iInf_comm #align set.Inter_comm Set.iInter_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iUnion₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋃ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋃ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iSup₂_comm _ #align set.Union₂_comm Set.iUnion₂_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iInter₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋂ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋂ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iInf₂_comm _ #align set.Inter₂_comm Set.iInter₂_comm @[simp] theorem biUnion_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋃ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iUnion_and, @iUnion_comm _ ι'] #align set.bUnion_and Set.biUnion_and @[simp] theorem biUnion_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋃ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iUnion_and, @iUnion_comm _ ι] #align set.bUnion_and' Set.biUnion_and' @[simp] theorem biInter_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋂ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iInter_and, @iInter_comm _ ι'] #align set.bInter_and Set.biInter_and @[simp] theorem biInter_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋂ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iInter_and, @iInter_comm _ ι] #align set.bInter_and' Set.biInter_and' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (x h) -/ @[simp] theorem iUnion_iUnion_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋃ (x) (h), s x h = s b (Or.inl rfl) ∪ ⋃ (x) (h : p x), s x (Or.inr h) := by simp only [iUnion_or, iUnion_union_distrib, iUnion_iUnion_eq_left] #align set.Union_Union_eq_or_left Set.iUnion_iUnion_eq_or_left /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (x h) -/ @[simp] theorem iInter_iInter_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋂ (x) (h), s x h = s b (Or.inl rfl) ∩ ⋂ (x) (h : p x), s x (Or.inr h) := by simp only [iInter_or, iInter_inter_distrib, iInter_iInter_eq_left] #align set.Inter_Inter_eq_or_left Set.iInter_iInter_eq_or_left /-! ### Bounded unions and intersections -/ /-- A specialization of `mem_iUnion₂`. -/ theorem mem_biUnion {s : Set α} {t : α → Set β} {x : α} {y : β} (xs : x ∈ s) (ytx : y ∈ t x) : y ∈ ⋃ x ∈ s, t x := mem_iUnion₂_of_mem xs ytx #align set.mem_bUnion Set.mem_biUnion /-- A specialization of `mem_iInter₂`. -/ theorem mem_biInter {s : Set α} {t : α → Set β} {y : β} (h : ∀ x ∈ s, y ∈ t x) : y ∈ ⋂ x ∈ s, t x := mem_iInter₂_of_mem h #align set.mem_bInter Set.mem_biInter /-- A specialization of `subset_iUnion₂`. -/ theorem subset_biUnion_of_mem {s : Set α} {u : α → Set β} {x : α} (xs : x ∈ s) : u x ⊆ ⋃ x ∈ s, u x := --Porting note: Why is this not just `subset_iUnion₂ x xs`? @subset_iUnion₂ β α (· ∈ s) (fun i _ => u i) x xs #align set.subset_bUnion_of_mem Set.subset_biUnion_of_mem /-- A specialization of `iInter₂_subset`. -/ theorem biInter_subset_of_mem {s : Set α} {t : α → Set β} {x : α} (xs : x ∈ s) : ⋂ x ∈ s, t x ⊆ t x := iInter₂_subset x xs #align set.bInter_subset_of_mem Set.biInter_subset_of_mem theorem biUnion_subset_biUnion_left {s s' : Set α} {t : α → Set β} (h : s ⊆ s') : ⋃ x ∈ s, t x ⊆ ⋃ x ∈ s', t x := iUnion₂_subset fun _ hx => subset_biUnion_of_mem <| h hx #align set.bUnion_subset_bUnion_left Set.biUnion_subset_biUnion_left theorem biInter_subset_biInter_left {s s' : Set α} {t : α → Set β} (h : s' ⊆ s) : ⋂ x ∈ s, t x ⊆ ⋂ x ∈ s', t x := subset_iInter₂ fun _ hx => biInter_subset_of_mem <| h hx #align set.bInter_subset_bInter_left Set.biInter_subset_biInter_left theorem biUnion_mono {s s' : Set α} {t t' : α → Set β} (hs : s' ⊆ s) (h : ∀ x ∈ s, t x ⊆ t' x) : ⋃ x ∈ s', t x ⊆ ⋃ x ∈ s, t' x := (biUnion_subset_biUnion_left hs).trans <| iUnion₂_mono h #align set.bUnion_mono Set.biUnion_mono theorem biInter_mono {s s' : Set α} {t t' : α → Set β} (hs : s ⊆ s') (h : ∀ x ∈ s, t x ⊆ t' x) : ⋂ x ∈ s', t x ⊆ ⋂ x ∈ s, t' x := (biInter_subset_biInter_left hs).trans <| iInter₂_mono h #align set.bInter_mono Set.biInter_mono theorem biUnion_eq_iUnion (s : Set α) (t : ∀ x ∈ s, Set β) : ⋃ x ∈ s, t x ‹_› = ⋃ x : s, t x x.2 := iSup_subtype' #align set.bUnion_eq_Union Set.biUnion_eq_iUnion theorem biInter_eq_iInter (s : Set α) (t : ∀ x ∈ s, Set β) : ⋂ x ∈ s, t x ‹_› = ⋂ x : s, t x x.2 := iInf_subtype' #align set.bInter_eq_Inter Set.biInter_eq_iInter theorem iUnion_subtype (p : α → Prop) (s : { x // p x } → Set β) : ⋃ x : { x // p x }, s x = ⋃ (x) (hx : p x), s ⟨x, hx⟩ := iSup_subtype #align set.Union_subtype Set.iUnion_subtype theorem iInter_subtype (p : α → Prop) (s : { x // p x } → Set β) : ⋂ x : { x // p x }, s x = ⋂ (x) (hx : p x), s ⟨x, hx⟩ := iInf_subtype #align set.Inter_subtype Set.iInter_subtype theorem biInter_empty (u : α → Set β) : ⋂ x ∈ (∅ : Set α), u x = univ := iInf_emptyset #align set.bInter_empty Set.biInter_empty theorem biInter_univ (u : α → Set β) : ⋂ x ∈ @univ α, u x = ⋂ x, u x := iInf_univ #align set.bInter_univ Set.biInter_univ @[simp] theorem biUnion_self (s : Set α) : ⋃ x ∈ s, s = s := Subset.antisymm (iUnion₂_subset fun _ _ => Subset.refl s) fun _ hx => mem_biUnion hx hx #align set.bUnion_self Set.biUnion_self @[simp] theorem iUnion_nonempty_self (s : Set α) : ⋃ _ : s.Nonempty, s = s := by rw [iUnion_nonempty_index, biUnion_self] #align set.Union_nonempty_self Set.iUnion_nonempty_self theorem biInter_singleton (a : α) (s : α → Set β) : ⋂ x ∈ ({a} : Set α), s x = s a := iInf_singleton #align set.bInter_singleton Set.biInter_singleton theorem biInter_union (s t : Set α) (u : α → Set β) : ⋂ x ∈ s ∪ t, u x = (⋂ x ∈ s, u x) ∩ ⋂ x ∈ t, u x := iInf_union #align set.bInter_union Set.biInter_union theorem biInter_insert (a : α) (s : Set α) (t : α → Set β) : ⋂ x ∈ insert a s, t x = t a ∩ ⋂ x ∈ s, t x := by simp #align set.bInter_insert Set.biInter_insert theorem biInter_pair (a b : α) (s : α → Set β) : ⋂ x ∈ ({a, b} : Set α), s x = s a ∩ s b := by rw [biInter_insert, biInter_singleton] #align set.bInter_pair Set.biInter_pair theorem biInter_inter {ι α : Type*} {s : Set ι} (hs : s.Nonempty) (f : ι → Set α) (t : Set α) : ⋂ i ∈ s, f i ∩ t = (⋂ i ∈ s, f i) ∩ t := by haveI : Nonempty s := hs.to_subtype
simp [biInter_eq_iInter, ← iInter_inter]
theorem biInter_inter {ι α : Type*} {s : Set ι} (hs : s.Nonempty) (f : ι → Set α) (t : Set α) : ⋂ i ∈ s, f i ∩ t = (⋂ i ∈ s, f i) ∩ t := by haveI : Nonempty s := hs.to_subtype
Mathlib.Data.Set.Lattice.1065_0.5mONj49h3SYSDwc
theorem biInter_inter {ι α : Type*} {s : Set ι} (hs : s.Nonempty) (f : ι → Set α) (t : Set α) : ⋂ i ∈ s, f i ∩ t = (⋂ i ∈ s, f i) ∩ t
Mathlib_Data_Set_Lattice
α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι✝ → Sort u_7 κ₁ : ι✝ → Sort u_8 κ₂ : ι✝ → Sort u_9 κ' : ι' → Sort u_10 ι : Type u_11 α : Type u_12 s : Set ι hs : Set.Nonempty s f : ι → Set α t : Set α ⊢ ⋂ i ∈ s, t ∩ f i = t ∩ ⋂ i ∈ s, f i
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩ rw [@forall_update_iff ι α _ z i y fun i t => t ∈ v i] exact ⟨y_in, fun j _ => by simpa using hz j⟩ #align set.image_projection_prod Set.image_projection_prod /-! ### Unions and intersections indexed by `Prop` -/ theorem iInter_false {s : False → Set α} : iInter s = univ := iInf_false #align set.Inter_false Set.iInter_false theorem iUnion_false {s : False → Set α} : iUnion s = ∅ := iSup_false #align set.Union_false Set.iUnion_false @[simp] theorem iInter_true {s : True → Set α} : iInter s = s trivial := iInf_true #align set.Inter_true Set.iInter_true @[simp] theorem iUnion_true {s : True → Set α} : iUnion s = s trivial := iSup_true #align set.Union_true Set.iUnion_true @[simp] theorem iInter_exists {p : ι → Prop} {f : Exists p → Set α} : ⋂ x, f x = ⋂ (i) (h : p i), f ⟨i, h⟩ := iInf_exists #align set.Inter_exists Set.iInter_exists @[simp] theorem iUnion_exists {p : ι → Prop} {f : Exists p → Set α} : ⋃ x, f x = ⋃ (i) (h : p i), f ⟨i, h⟩ := iSup_exists #align set.Union_exists Set.iUnion_exists @[simp] theorem iUnion_empty : (⋃ _ : ι, ∅ : Set α) = ∅ := iSup_bot #align set.Union_empty Set.iUnion_empty @[simp] theorem iInter_univ : (⋂ _ : ι, univ : Set α) = univ := iInf_top #align set.Inter_univ Set.iInter_univ section variable {s : ι → Set α} @[simp] theorem iUnion_eq_empty : ⋃ i, s i = ∅ ↔ ∀ i, s i = ∅ := iSup_eq_bot #align set.Union_eq_empty Set.iUnion_eq_empty @[simp] theorem iInter_eq_univ : ⋂ i, s i = univ ↔ ∀ i, s i = univ := iInf_eq_top #align set.Inter_eq_univ Set.iInter_eq_univ @[simp] theorem nonempty_iUnion : (⋃ i, s i).Nonempty ↔ ∃ i, (s i).Nonempty := by simp [nonempty_iff_ne_empty] #align set.nonempty_Union Set.nonempty_iUnion --Porting note: removing `simp`. `simp` can prove it theorem nonempty_biUnion {t : Set α} {s : α → Set β} : (⋃ i ∈ t, s i).Nonempty ↔ ∃ i ∈ t, (s i).Nonempty := by simp #align set.nonempty_bUnion Set.nonempty_biUnion theorem iUnion_nonempty_index (s : Set α) (t : s.Nonempty → Set β) : ⋃ h, t h = ⋃ x ∈ s, t ⟨x, ‹_›⟩ := iSup_exists #align set.Union_nonempty_index Set.iUnion_nonempty_index end @[simp] theorem iInter_iInter_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋂ (x) (h : x = b), s x h = s b rfl := iInf_iInf_eq_left #align set.Inter_Inter_eq_left Set.iInter_iInter_eq_left @[simp] theorem iInter_iInter_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋂ (x) (h : b = x), s x h = s b rfl := iInf_iInf_eq_right #align set.Inter_Inter_eq_right Set.iInter_iInter_eq_right @[simp] theorem iUnion_iUnion_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋃ (x) (h : x = b), s x h = s b rfl := iSup_iSup_eq_left #align set.Union_Union_eq_left Set.iUnion_iUnion_eq_left @[simp] theorem iUnion_iUnion_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋃ (x) (h : b = x), s x h = s b rfl := iSup_iSup_eq_right #align set.Union_Union_eq_right Set.iUnion_iUnion_eq_right theorem iInter_or {p q : Prop} (s : p ∨ q → Set α) : ⋂ h, s h = (⋂ h : p, s (Or.inl h)) ∩ ⋂ h : q, s (Or.inr h) := iInf_or #align set.Inter_or Set.iInter_or theorem iUnion_or {p q : Prop} (s : p ∨ q → Set α) : ⋃ h, s h = (⋃ i, s (Or.inl i)) ∪ ⋃ j, s (Or.inr j) := iSup_or #align set.Union_or Set.iUnion_or /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iUnion_and {p q : Prop} (s : p ∧ q → Set α) : ⋃ h, s h = ⋃ (hp) (hq), s ⟨hp, hq⟩ := iSup_and #align set.Union_and Set.iUnion_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iInter_and {p q : Prop} (s : p ∧ q → Set α) : ⋂ h, s h = ⋂ (hp) (hq), s ⟨hp, hq⟩ := iInf_and #align set.Inter_and Set.iInter_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iUnion_comm (s : ι → ι' → Set α) : ⋃ (i) (i'), s i i' = ⋃ (i') (i), s i i' := iSup_comm #align set.Union_comm Set.iUnion_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iInter_comm (s : ι → ι' → Set α) : ⋂ (i) (i'), s i i' = ⋂ (i') (i), s i i' := iInf_comm #align set.Inter_comm Set.iInter_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iUnion₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋃ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋃ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iSup₂_comm _ #align set.Union₂_comm Set.iUnion₂_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iInter₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋂ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋂ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iInf₂_comm _ #align set.Inter₂_comm Set.iInter₂_comm @[simp] theorem biUnion_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋃ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iUnion_and, @iUnion_comm _ ι'] #align set.bUnion_and Set.biUnion_and @[simp] theorem biUnion_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋃ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iUnion_and, @iUnion_comm _ ι] #align set.bUnion_and' Set.biUnion_and' @[simp] theorem biInter_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋂ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iInter_and, @iInter_comm _ ι'] #align set.bInter_and Set.biInter_and @[simp] theorem biInter_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋂ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iInter_and, @iInter_comm _ ι] #align set.bInter_and' Set.biInter_and' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (x h) -/ @[simp] theorem iUnion_iUnion_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋃ (x) (h), s x h = s b (Or.inl rfl) ∪ ⋃ (x) (h : p x), s x (Or.inr h) := by simp only [iUnion_or, iUnion_union_distrib, iUnion_iUnion_eq_left] #align set.Union_Union_eq_or_left Set.iUnion_iUnion_eq_or_left /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (x h) -/ @[simp] theorem iInter_iInter_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋂ (x) (h), s x h = s b (Or.inl rfl) ∩ ⋂ (x) (h : p x), s x (Or.inr h) := by simp only [iInter_or, iInter_inter_distrib, iInter_iInter_eq_left] #align set.Inter_Inter_eq_or_left Set.iInter_iInter_eq_or_left /-! ### Bounded unions and intersections -/ /-- A specialization of `mem_iUnion₂`. -/ theorem mem_biUnion {s : Set α} {t : α → Set β} {x : α} {y : β} (xs : x ∈ s) (ytx : y ∈ t x) : y ∈ ⋃ x ∈ s, t x := mem_iUnion₂_of_mem xs ytx #align set.mem_bUnion Set.mem_biUnion /-- A specialization of `mem_iInter₂`. -/ theorem mem_biInter {s : Set α} {t : α → Set β} {y : β} (h : ∀ x ∈ s, y ∈ t x) : y ∈ ⋂ x ∈ s, t x := mem_iInter₂_of_mem h #align set.mem_bInter Set.mem_biInter /-- A specialization of `subset_iUnion₂`. -/ theorem subset_biUnion_of_mem {s : Set α} {u : α → Set β} {x : α} (xs : x ∈ s) : u x ⊆ ⋃ x ∈ s, u x := --Porting note: Why is this not just `subset_iUnion₂ x xs`? @subset_iUnion₂ β α (· ∈ s) (fun i _ => u i) x xs #align set.subset_bUnion_of_mem Set.subset_biUnion_of_mem /-- A specialization of `iInter₂_subset`. -/ theorem biInter_subset_of_mem {s : Set α} {t : α → Set β} {x : α} (xs : x ∈ s) : ⋂ x ∈ s, t x ⊆ t x := iInter₂_subset x xs #align set.bInter_subset_of_mem Set.biInter_subset_of_mem theorem biUnion_subset_biUnion_left {s s' : Set α} {t : α → Set β} (h : s ⊆ s') : ⋃ x ∈ s, t x ⊆ ⋃ x ∈ s', t x := iUnion₂_subset fun _ hx => subset_biUnion_of_mem <| h hx #align set.bUnion_subset_bUnion_left Set.biUnion_subset_biUnion_left theorem biInter_subset_biInter_left {s s' : Set α} {t : α → Set β} (h : s' ⊆ s) : ⋂ x ∈ s, t x ⊆ ⋂ x ∈ s', t x := subset_iInter₂ fun _ hx => biInter_subset_of_mem <| h hx #align set.bInter_subset_bInter_left Set.biInter_subset_biInter_left theorem biUnion_mono {s s' : Set α} {t t' : α → Set β} (hs : s' ⊆ s) (h : ∀ x ∈ s, t x ⊆ t' x) : ⋃ x ∈ s', t x ⊆ ⋃ x ∈ s, t' x := (biUnion_subset_biUnion_left hs).trans <| iUnion₂_mono h #align set.bUnion_mono Set.biUnion_mono theorem biInter_mono {s s' : Set α} {t t' : α → Set β} (hs : s ⊆ s') (h : ∀ x ∈ s, t x ⊆ t' x) : ⋂ x ∈ s', t x ⊆ ⋂ x ∈ s, t' x := (biInter_subset_biInter_left hs).trans <| iInter₂_mono h #align set.bInter_mono Set.biInter_mono theorem biUnion_eq_iUnion (s : Set α) (t : ∀ x ∈ s, Set β) : ⋃ x ∈ s, t x ‹_› = ⋃ x : s, t x x.2 := iSup_subtype' #align set.bUnion_eq_Union Set.biUnion_eq_iUnion theorem biInter_eq_iInter (s : Set α) (t : ∀ x ∈ s, Set β) : ⋂ x ∈ s, t x ‹_› = ⋂ x : s, t x x.2 := iInf_subtype' #align set.bInter_eq_Inter Set.biInter_eq_iInter theorem iUnion_subtype (p : α → Prop) (s : { x // p x } → Set β) : ⋃ x : { x // p x }, s x = ⋃ (x) (hx : p x), s ⟨x, hx⟩ := iSup_subtype #align set.Union_subtype Set.iUnion_subtype theorem iInter_subtype (p : α → Prop) (s : { x // p x } → Set β) : ⋂ x : { x // p x }, s x = ⋂ (x) (hx : p x), s ⟨x, hx⟩ := iInf_subtype #align set.Inter_subtype Set.iInter_subtype theorem biInter_empty (u : α → Set β) : ⋂ x ∈ (∅ : Set α), u x = univ := iInf_emptyset #align set.bInter_empty Set.biInter_empty theorem biInter_univ (u : α → Set β) : ⋂ x ∈ @univ α, u x = ⋂ x, u x := iInf_univ #align set.bInter_univ Set.biInter_univ @[simp] theorem biUnion_self (s : Set α) : ⋃ x ∈ s, s = s := Subset.antisymm (iUnion₂_subset fun _ _ => Subset.refl s) fun _ hx => mem_biUnion hx hx #align set.bUnion_self Set.biUnion_self @[simp] theorem iUnion_nonempty_self (s : Set α) : ⋃ _ : s.Nonempty, s = s := by rw [iUnion_nonempty_index, biUnion_self] #align set.Union_nonempty_self Set.iUnion_nonempty_self theorem biInter_singleton (a : α) (s : α → Set β) : ⋂ x ∈ ({a} : Set α), s x = s a := iInf_singleton #align set.bInter_singleton Set.biInter_singleton theorem biInter_union (s t : Set α) (u : α → Set β) : ⋂ x ∈ s ∪ t, u x = (⋂ x ∈ s, u x) ∩ ⋂ x ∈ t, u x := iInf_union #align set.bInter_union Set.biInter_union theorem biInter_insert (a : α) (s : Set α) (t : α → Set β) : ⋂ x ∈ insert a s, t x = t a ∩ ⋂ x ∈ s, t x := by simp #align set.bInter_insert Set.biInter_insert theorem biInter_pair (a b : α) (s : α → Set β) : ⋂ x ∈ ({a, b} : Set α), s x = s a ∩ s b := by rw [biInter_insert, biInter_singleton] #align set.bInter_pair Set.biInter_pair theorem biInter_inter {ι α : Type*} {s : Set ι} (hs : s.Nonempty) (f : ι → Set α) (t : Set α) : ⋂ i ∈ s, f i ∩ t = (⋂ i ∈ s, f i) ∩ t := by haveI : Nonempty s := hs.to_subtype simp [biInter_eq_iInter, ← iInter_inter] #align set.bInter_inter Set.biInter_inter theorem inter_biInter {ι α : Type*} {s : Set ι} (hs : s.Nonempty) (f : ι → Set α) (t : Set α) : ⋂ i ∈ s, t ∩ f i = t ∩ ⋂ i ∈ s, f i := by
rw [inter_comm, ← biInter_inter hs]
theorem inter_biInter {ι α : Type*} {s : Set ι} (hs : s.Nonempty) (f : ι → Set α) (t : Set α) : ⋂ i ∈ s, t ∩ f i = t ∩ ⋂ i ∈ s, f i := by
Mathlib.Data.Set.Lattice.1071_0.5mONj49h3SYSDwc
theorem inter_biInter {ι α : Type*} {s : Set ι} (hs : s.Nonempty) (f : ι → Set α) (t : Set α) : ⋂ i ∈ s, t ∩ f i = t ∩ ⋂ i ∈ s, f i
Mathlib_Data_Set_Lattice
α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι✝ → Sort u_7 κ₁ : ι✝ → Sort u_8 κ₂ : ι✝ → Sort u_9 κ' : ι' → Sort u_10 ι : Type u_11 α : Type u_12 s : Set ι hs : Set.Nonempty s f : ι → Set α t : Set α ⊢ ⋂ i ∈ s, t ∩ f i = ⋂ i ∈ s, f i ∩ t
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩ rw [@forall_update_iff ι α _ z i y fun i t => t ∈ v i] exact ⟨y_in, fun j _ => by simpa using hz j⟩ #align set.image_projection_prod Set.image_projection_prod /-! ### Unions and intersections indexed by `Prop` -/ theorem iInter_false {s : False → Set α} : iInter s = univ := iInf_false #align set.Inter_false Set.iInter_false theorem iUnion_false {s : False → Set α} : iUnion s = ∅ := iSup_false #align set.Union_false Set.iUnion_false @[simp] theorem iInter_true {s : True → Set α} : iInter s = s trivial := iInf_true #align set.Inter_true Set.iInter_true @[simp] theorem iUnion_true {s : True → Set α} : iUnion s = s trivial := iSup_true #align set.Union_true Set.iUnion_true @[simp] theorem iInter_exists {p : ι → Prop} {f : Exists p → Set α} : ⋂ x, f x = ⋂ (i) (h : p i), f ⟨i, h⟩ := iInf_exists #align set.Inter_exists Set.iInter_exists @[simp] theorem iUnion_exists {p : ι → Prop} {f : Exists p → Set α} : ⋃ x, f x = ⋃ (i) (h : p i), f ⟨i, h⟩ := iSup_exists #align set.Union_exists Set.iUnion_exists @[simp] theorem iUnion_empty : (⋃ _ : ι, ∅ : Set α) = ∅ := iSup_bot #align set.Union_empty Set.iUnion_empty @[simp] theorem iInter_univ : (⋂ _ : ι, univ : Set α) = univ := iInf_top #align set.Inter_univ Set.iInter_univ section variable {s : ι → Set α} @[simp] theorem iUnion_eq_empty : ⋃ i, s i = ∅ ↔ ∀ i, s i = ∅ := iSup_eq_bot #align set.Union_eq_empty Set.iUnion_eq_empty @[simp] theorem iInter_eq_univ : ⋂ i, s i = univ ↔ ∀ i, s i = univ := iInf_eq_top #align set.Inter_eq_univ Set.iInter_eq_univ @[simp] theorem nonempty_iUnion : (⋃ i, s i).Nonempty ↔ ∃ i, (s i).Nonempty := by simp [nonempty_iff_ne_empty] #align set.nonempty_Union Set.nonempty_iUnion --Porting note: removing `simp`. `simp` can prove it theorem nonempty_biUnion {t : Set α} {s : α → Set β} : (⋃ i ∈ t, s i).Nonempty ↔ ∃ i ∈ t, (s i).Nonempty := by simp #align set.nonempty_bUnion Set.nonempty_biUnion theorem iUnion_nonempty_index (s : Set α) (t : s.Nonempty → Set β) : ⋃ h, t h = ⋃ x ∈ s, t ⟨x, ‹_›⟩ := iSup_exists #align set.Union_nonempty_index Set.iUnion_nonempty_index end @[simp] theorem iInter_iInter_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋂ (x) (h : x = b), s x h = s b rfl := iInf_iInf_eq_left #align set.Inter_Inter_eq_left Set.iInter_iInter_eq_left @[simp] theorem iInter_iInter_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋂ (x) (h : b = x), s x h = s b rfl := iInf_iInf_eq_right #align set.Inter_Inter_eq_right Set.iInter_iInter_eq_right @[simp] theorem iUnion_iUnion_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋃ (x) (h : x = b), s x h = s b rfl := iSup_iSup_eq_left #align set.Union_Union_eq_left Set.iUnion_iUnion_eq_left @[simp] theorem iUnion_iUnion_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋃ (x) (h : b = x), s x h = s b rfl := iSup_iSup_eq_right #align set.Union_Union_eq_right Set.iUnion_iUnion_eq_right theorem iInter_or {p q : Prop} (s : p ∨ q → Set α) : ⋂ h, s h = (⋂ h : p, s (Or.inl h)) ∩ ⋂ h : q, s (Or.inr h) := iInf_or #align set.Inter_or Set.iInter_or theorem iUnion_or {p q : Prop} (s : p ∨ q → Set α) : ⋃ h, s h = (⋃ i, s (Or.inl i)) ∪ ⋃ j, s (Or.inr j) := iSup_or #align set.Union_or Set.iUnion_or /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iUnion_and {p q : Prop} (s : p ∧ q → Set α) : ⋃ h, s h = ⋃ (hp) (hq), s ⟨hp, hq⟩ := iSup_and #align set.Union_and Set.iUnion_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iInter_and {p q : Prop} (s : p ∧ q → Set α) : ⋂ h, s h = ⋂ (hp) (hq), s ⟨hp, hq⟩ := iInf_and #align set.Inter_and Set.iInter_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iUnion_comm (s : ι → ι' → Set α) : ⋃ (i) (i'), s i i' = ⋃ (i') (i), s i i' := iSup_comm #align set.Union_comm Set.iUnion_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iInter_comm (s : ι → ι' → Set α) : ⋂ (i) (i'), s i i' = ⋂ (i') (i), s i i' := iInf_comm #align set.Inter_comm Set.iInter_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iUnion₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋃ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋃ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iSup₂_comm _ #align set.Union₂_comm Set.iUnion₂_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iInter₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋂ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋂ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iInf₂_comm _ #align set.Inter₂_comm Set.iInter₂_comm @[simp] theorem biUnion_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋃ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iUnion_and, @iUnion_comm _ ι'] #align set.bUnion_and Set.biUnion_and @[simp] theorem biUnion_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋃ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iUnion_and, @iUnion_comm _ ι] #align set.bUnion_and' Set.biUnion_and' @[simp] theorem biInter_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋂ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iInter_and, @iInter_comm _ ι'] #align set.bInter_and Set.biInter_and @[simp] theorem biInter_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋂ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iInter_and, @iInter_comm _ ι] #align set.bInter_and' Set.biInter_and' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (x h) -/ @[simp] theorem iUnion_iUnion_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋃ (x) (h), s x h = s b (Or.inl rfl) ∪ ⋃ (x) (h : p x), s x (Or.inr h) := by simp only [iUnion_or, iUnion_union_distrib, iUnion_iUnion_eq_left] #align set.Union_Union_eq_or_left Set.iUnion_iUnion_eq_or_left /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (x h) -/ @[simp] theorem iInter_iInter_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋂ (x) (h), s x h = s b (Or.inl rfl) ∩ ⋂ (x) (h : p x), s x (Or.inr h) := by simp only [iInter_or, iInter_inter_distrib, iInter_iInter_eq_left] #align set.Inter_Inter_eq_or_left Set.iInter_iInter_eq_or_left /-! ### Bounded unions and intersections -/ /-- A specialization of `mem_iUnion₂`. -/ theorem mem_biUnion {s : Set α} {t : α → Set β} {x : α} {y : β} (xs : x ∈ s) (ytx : y ∈ t x) : y ∈ ⋃ x ∈ s, t x := mem_iUnion₂_of_mem xs ytx #align set.mem_bUnion Set.mem_biUnion /-- A specialization of `mem_iInter₂`. -/ theorem mem_biInter {s : Set α} {t : α → Set β} {y : β} (h : ∀ x ∈ s, y ∈ t x) : y ∈ ⋂ x ∈ s, t x := mem_iInter₂_of_mem h #align set.mem_bInter Set.mem_biInter /-- A specialization of `subset_iUnion₂`. -/ theorem subset_biUnion_of_mem {s : Set α} {u : α → Set β} {x : α} (xs : x ∈ s) : u x ⊆ ⋃ x ∈ s, u x := --Porting note: Why is this not just `subset_iUnion₂ x xs`? @subset_iUnion₂ β α (· ∈ s) (fun i _ => u i) x xs #align set.subset_bUnion_of_mem Set.subset_biUnion_of_mem /-- A specialization of `iInter₂_subset`. -/ theorem biInter_subset_of_mem {s : Set α} {t : α → Set β} {x : α} (xs : x ∈ s) : ⋂ x ∈ s, t x ⊆ t x := iInter₂_subset x xs #align set.bInter_subset_of_mem Set.biInter_subset_of_mem theorem biUnion_subset_biUnion_left {s s' : Set α} {t : α → Set β} (h : s ⊆ s') : ⋃ x ∈ s, t x ⊆ ⋃ x ∈ s', t x := iUnion₂_subset fun _ hx => subset_biUnion_of_mem <| h hx #align set.bUnion_subset_bUnion_left Set.biUnion_subset_biUnion_left theorem biInter_subset_biInter_left {s s' : Set α} {t : α → Set β} (h : s' ⊆ s) : ⋂ x ∈ s, t x ⊆ ⋂ x ∈ s', t x := subset_iInter₂ fun _ hx => biInter_subset_of_mem <| h hx #align set.bInter_subset_bInter_left Set.biInter_subset_biInter_left theorem biUnion_mono {s s' : Set α} {t t' : α → Set β} (hs : s' ⊆ s) (h : ∀ x ∈ s, t x ⊆ t' x) : ⋃ x ∈ s', t x ⊆ ⋃ x ∈ s, t' x := (biUnion_subset_biUnion_left hs).trans <| iUnion₂_mono h #align set.bUnion_mono Set.biUnion_mono theorem biInter_mono {s s' : Set α} {t t' : α → Set β} (hs : s ⊆ s') (h : ∀ x ∈ s, t x ⊆ t' x) : ⋂ x ∈ s', t x ⊆ ⋂ x ∈ s, t' x := (biInter_subset_biInter_left hs).trans <| iInter₂_mono h #align set.bInter_mono Set.biInter_mono theorem biUnion_eq_iUnion (s : Set α) (t : ∀ x ∈ s, Set β) : ⋃ x ∈ s, t x ‹_› = ⋃ x : s, t x x.2 := iSup_subtype' #align set.bUnion_eq_Union Set.biUnion_eq_iUnion theorem biInter_eq_iInter (s : Set α) (t : ∀ x ∈ s, Set β) : ⋂ x ∈ s, t x ‹_› = ⋂ x : s, t x x.2 := iInf_subtype' #align set.bInter_eq_Inter Set.biInter_eq_iInter theorem iUnion_subtype (p : α → Prop) (s : { x // p x } → Set β) : ⋃ x : { x // p x }, s x = ⋃ (x) (hx : p x), s ⟨x, hx⟩ := iSup_subtype #align set.Union_subtype Set.iUnion_subtype theorem iInter_subtype (p : α → Prop) (s : { x // p x } → Set β) : ⋂ x : { x // p x }, s x = ⋂ (x) (hx : p x), s ⟨x, hx⟩ := iInf_subtype #align set.Inter_subtype Set.iInter_subtype theorem biInter_empty (u : α → Set β) : ⋂ x ∈ (∅ : Set α), u x = univ := iInf_emptyset #align set.bInter_empty Set.biInter_empty theorem biInter_univ (u : α → Set β) : ⋂ x ∈ @univ α, u x = ⋂ x, u x := iInf_univ #align set.bInter_univ Set.biInter_univ @[simp] theorem biUnion_self (s : Set α) : ⋃ x ∈ s, s = s := Subset.antisymm (iUnion₂_subset fun _ _ => Subset.refl s) fun _ hx => mem_biUnion hx hx #align set.bUnion_self Set.biUnion_self @[simp] theorem iUnion_nonempty_self (s : Set α) : ⋃ _ : s.Nonempty, s = s := by rw [iUnion_nonempty_index, biUnion_self] #align set.Union_nonempty_self Set.iUnion_nonempty_self theorem biInter_singleton (a : α) (s : α → Set β) : ⋂ x ∈ ({a} : Set α), s x = s a := iInf_singleton #align set.bInter_singleton Set.biInter_singleton theorem biInter_union (s t : Set α) (u : α → Set β) : ⋂ x ∈ s ∪ t, u x = (⋂ x ∈ s, u x) ∩ ⋂ x ∈ t, u x := iInf_union #align set.bInter_union Set.biInter_union theorem biInter_insert (a : α) (s : Set α) (t : α → Set β) : ⋂ x ∈ insert a s, t x = t a ∩ ⋂ x ∈ s, t x := by simp #align set.bInter_insert Set.biInter_insert theorem biInter_pair (a b : α) (s : α → Set β) : ⋂ x ∈ ({a, b} : Set α), s x = s a ∩ s b := by rw [biInter_insert, biInter_singleton] #align set.bInter_pair Set.biInter_pair theorem biInter_inter {ι α : Type*} {s : Set ι} (hs : s.Nonempty) (f : ι → Set α) (t : Set α) : ⋂ i ∈ s, f i ∩ t = (⋂ i ∈ s, f i) ∩ t := by haveI : Nonempty s := hs.to_subtype simp [biInter_eq_iInter, ← iInter_inter] #align set.bInter_inter Set.biInter_inter theorem inter_biInter {ι α : Type*} {s : Set ι} (hs : s.Nonempty) (f : ι → Set α) (t : Set α) : ⋂ i ∈ s, t ∩ f i = t ∩ ⋂ i ∈ s, f i := by rw [inter_comm, ← biInter_inter hs]
simp [inter_comm]
theorem inter_biInter {ι α : Type*} {s : Set ι} (hs : s.Nonempty) (f : ι → Set α) (t : Set α) : ⋂ i ∈ s, t ∩ f i = t ∩ ⋂ i ∈ s, f i := by rw [inter_comm, ← biInter_inter hs]
Mathlib.Data.Set.Lattice.1071_0.5mONj49h3SYSDwc
theorem inter_biInter {ι α : Type*} {s : Set ι} (hs : s.Nonempty) (f : ι → Set α) (t : Set α) : ⋂ i ∈ s, t ∩ f i = t ∩ ⋂ i ∈ s, f i
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 s : Set α ⊢ ∀ (x : α), x ∈ ⋃ x ∈ s, {x} ↔ x ∈ s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩ rw [@forall_update_iff ι α _ z i y fun i t => t ∈ v i] exact ⟨y_in, fun j _ => by simpa using hz j⟩ #align set.image_projection_prod Set.image_projection_prod /-! ### Unions and intersections indexed by `Prop` -/ theorem iInter_false {s : False → Set α} : iInter s = univ := iInf_false #align set.Inter_false Set.iInter_false theorem iUnion_false {s : False → Set α} : iUnion s = ∅ := iSup_false #align set.Union_false Set.iUnion_false @[simp] theorem iInter_true {s : True → Set α} : iInter s = s trivial := iInf_true #align set.Inter_true Set.iInter_true @[simp] theorem iUnion_true {s : True → Set α} : iUnion s = s trivial := iSup_true #align set.Union_true Set.iUnion_true @[simp] theorem iInter_exists {p : ι → Prop} {f : Exists p → Set α} : ⋂ x, f x = ⋂ (i) (h : p i), f ⟨i, h⟩ := iInf_exists #align set.Inter_exists Set.iInter_exists @[simp] theorem iUnion_exists {p : ι → Prop} {f : Exists p → Set α} : ⋃ x, f x = ⋃ (i) (h : p i), f ⟨i, h⟩ := iSup_exists #align set.Union_exists Set.iUnion_exists @[simp] theorem iUnion_empty : (⋃ _ : ι, ∅ : Set α) = ∅ := iSup_bot #align set.Union_empty Set.iUnion_empty @[simp] theorem iInter_univ : (⋂ _ : ι, univ : Set α) = univ := iInf_top #align set.Inter_univ Set.iInter_univ section variable {s : ι → Set α} @[simp] theorem iUnion_eq_empty : ⋃ i, s i = ∅ ↔ ∀ i, s i = ∅ := iSup_eq_bot #align set.Union_eq_empty Set.iUnion_eq_empty @[simp] theorem iInter_eq_univ : ⋂ i, s i = univ ↔ ∀ i, s i = univ := iInf_eq_top #align set.Inter_eq_univ Set.iInter_eq_univ @[simp] theorem nonempty_iUnion : (⋃ i, s i).Nonempty ↔ ∃ i, (s i).Nonempty := by simp [nonempty_iff_ne_empty] #align set.nonempty_Union Set.nonempty_iUnion --Porting note: removing `simp`. `simp` can prove it theorem nonempty_biUnion {t : Set α} {s : α → Set β} : (⋃ i ∈ t, s i).Nonempty ↔ ∃ i ∈ t, (s i).Nonempty := by simp #align set.nonempty_bUnion Set.nonempty_biUnion theorem iUnion_nonempty_index (s : Set α) (t : s.Nonempty → Set β) : ⋃ h, t h = ⋃ x ∈ s, t ⟨x, ‹_›⟩ := iSup_exists #align set.Union_nonempty_index Set.iUnion_nonempty_index end @[simp] theorem iInter_iInter_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋂ (x) (h : x = b), s x h = s b rfl := iInf_iInf_eq_left #align set.Inter_Inter_eq_left Set.iInter_iInter_eq_left @[simp] theorem iInter_iInter_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋂ (x) (h : b = x), s x h = s b rfl := iInf_iInf_eq_right #align set.Inter_Inter_eq_right Set.iInter_iInter_eq_right @[simp] theorem iUnion_iUnion_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋃ (x) (h : x = b), s x h = s b rfl := iSup_iSup_eq_left #align set.Union_Union_eq_left Set.iUnion_iUnion_eq_left @[simp] theorem iUnion_iUnion_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋃ (x) (h : b = x), s x h = s b rfl := iSup_iSup_eq_right #align set.Union_Union_eq_right Set.iUnion_iUnion_eq_right theorem iInter_or {p q : Prop} (s : p ∨ q → Set α) : ⋂ h, s h = (⋂ h : p, s (Or.inl h)) ∩ ⋂ h : q, s (Or.inr h) := iInf_or #align set.Inter_or Set.iInter_or theorem iUnion_or {p q : Prop} (s : p ∨ q → Set α) : ⋃ h, s h = (⋃ i, s (Or.inl i)) ∪ ⋃ j, s (Or.inr j) := iSup_or #align set.Union_or Set.iUnion_or /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iUnion_and {p q : Prop} (s : p ∧ q → Set α) : ⋃ h, s h = ⋃ (hp) (hq), s ⟨hp, hq⟩ := iSup_and #align set.Union_and Set.iUnion_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iInter_and {p q : Prop} (s : p ∧ q → Set α) : ⋂ h, s h = ⋂ (hp) (hq), s ⟨hp, hq⟩ := iInf_and #align set.Inter_and Set.iInter_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iUnion_comm (s : ι → ι' → Set α) : ⋃ (i) (i'), s i i' = ⋃ (i') (i), s i i' := iSup_comm #align set.Union_comm Set.iUnion_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iInter_comm (s : ι → ι' → Set α) : ⋂ (i) (i'), s i i' = ⋂ (i') (i), s i i' := iInf_comm #align set.Inter_comm Set.iInter_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iUnion₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋃ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋃ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iSup₂_comm _ #align set.Union₂_comm Set.iUnion₂_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iInter₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋂ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋂ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iInf₂_comm _ #align set.Inter₂_comm Set.iInter₂_comm @[simp] theorem biUnion_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋃ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iUnion_and, @iUnion_comm _ ι'] #align set.bUnion_and Set.biUnion_and @[simp] theorem biUnion_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋃ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iUnion_and, @iUnion_comm _ ι] #align set.bUnion_and' Set.biUnion_and' @[simp] theorem biInter_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋂ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iInter_and, @iInter_comm _ ι'] #align set.bInter_and Set.biInter_and @[simp] theorem biInter_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋂ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iInter_and, @iInter_comm _ ι] #align set.bInter_and' Set.biInter_and' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (x h) -/ @[simp] theorem iUnion_iUnion_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋃ (x) (h), s x h = s b (Or.inl rfl) ∪ ⋃ (x) (h : p x), s x (Or.inr h) := by simp only [iUnion_or, iUnion_union_distrib, iUnion_iUnion_eq_left] #align set.Union_Union_eq_or_left Set.iUnion_iUnion_eq_or_left /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (x h) -/ @[simp] theorem iInter_iInter_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋂ (x) (h), s x h = s b (Or.inl rfl) ∩ ⋂ (x) (h : p x), s x (Or.inr h) := by simp only [iInter_or, iInter_inter_distrib, iInter_iInter_eq_left] #align set.Inter_Inter_eq_or_left Set.iInter_iInter_eq_or_left /-! ### Bounded unions and intersections -/ /-- A specialization of `mem_iUnion₂`. -/ theorem mem_biUnion {s : Set α} {t : α → Set β} {x : α} {y : β} (xs : x ∈ s) (ytx : y ∈ t x) : y ∈ ⋃ x ∈ s, t x := mem_iUnion₂_of_mem xs ytx #align set.mem_bUnion Set.mem_biUnion /-- A specialization of `mem_iInter₂`. -/ theorem mem_biInter {s : Set α} {t : α → Set β} {y : β} (h : ∀ x ∈ s, y ∈ t x) : y ∈ ⋂ x ∈ s, t x := mem_iInter₂_of_mem h #align set.mem_bInter Set.mem_biInter /-- A specialization of `subset_iUnion₂`. -/ theorem subset_biUnion_of_mem {s : Set α} {u : α → Set β} {x : α} (xs : x ∈ s) : u x ⊆ ⋃ x ∈ s, u x := --Porting note: Why is this not just `subset_iUnion₂ x xs`? @subset_iUnion₂ β α (· ∈ s) (fun i _ => u i) x xs #align set.subset_bUnion_of_mem Set.subset_biUnion_of_mem /-- A specialization of `iInter₂_subset`. -/ theorem biInter_subset_of_mem {s : Set α} {t : α → Set β} {x : α} (xs : x ∈ s) : ⋂ x ∈ s, t x ⊆ t x := iInter₂_subset x xs #align set.bInter_subset_of_mem Set.biInter_subset_of_mem theorem biUnion_subset_biUnion_left {s s' : Set α} {t : α → Set β} (h : s ⊆ s') : ⋃ x ∈ s, t x ⊆ ⋃ x ∈ s', t x := iUnion₂_subset fun _ hx => subset_biUnion_of_mem <| h hx #align set.bUnion_subset_bUnion_left Set.biUnion_subset_biUnion_left theorem biInter_subset_biInter_left {s s' : Set α} {t : α → Set β} (h : s' ⊆ s) : ⋂ x ∈ s, t x ⊆ ⋂ x ∈ s', t x := subset_iInter₂ fun _ hx => biInter_subset_of_mem <| h hx #align set.bInter_subset_bInter_left Set.biInter_subset_biInter_left theorem biUnion_mono {s s' : Set α} {t t' : α → Set β} (hs : s' ⊆ s) (h : ∀ x ∈ s, t x ⊆ t' x) : ⋃ x ∈ s', t x ⊆ ⋃ x ∈ s, t' x := (biUnion_subset_biUnion_left hs).trans <| iUnion₂_mono h #align set.bUnion_mono Set.biUnion_mono theorem biInter_mono {s s' : Set α} {t t' : α → Set β} (hs : s ⊆ s') (h : ∀ x ∈ s, t x ⊆ t' x) : ⋂ x ∈ s', t x ⊆ ⋂ x ∈ s, t' x := (biInter_subset_biInter_left hs).trans <| iInter₂_mono h #align set.bInter_mono Set.biInter_mono theorem biUnion_eq_iUnion (s : Set α) (t : ∀ x ∈ s, Set β) : ⋃ x ∈ s, t x ‹_› = ⋃ x : s, t x x.2 := iSup_subtype' #align set.bUnion_eq_Union Set.biUnion_eq_iUnion theorem biInter_eq_iInter (s : Set α) (t : ∀ x ∈ s, Set β) : ⋂ x ∈ s, t x ‹_› = ⋂ x : s, t x x.2 := iInf_subtype' #align set.bInter_eq_Inter Set.biInter_eq_iInter theorem iUnion_subtype (p : α → Prop) (s : { x // p x } → Set β) : ⋃ x : { x // p x }, s x = ⋃ (x) (hx : p x), s ⟨x, hx⟩ := iSup_subtype #align set.Union_subtype Set.iUnion_subtype theorem iInter_subtype (p : α → Prop) (s : { x // p x } → Set β) : ⋂ x : { x // p x }, s x = ⋂ (x) (hx : p x), s ⟨x, hx⟩ := iInf_subtype #align set.Inter_subtype Set.iInter_subtype theorem biInter_empty (u : α → Set β) : ⋂ x ∈ (∅ : Set α), u x = univ := iInf_emptyset #align set.bInter_empty Set.biInter_empty theorem biInter_univ (u : α → Set β) : ⋂ x ∈ @univ α, u x = ⋂ x, u x := iInf_univ #align set.bInter_univ Set.biInter_univ @[simp] theorem biUnion_self (s : Set α) : ⋃ x ∈ s, s = s := Subset.antisymm (iUnion₂_subset fun _ _ => Subset.refl s) fun _ hx => mem_biUnion hx hx #align set.bUnion_self Set.biUnion_self @[simp] theorem iUnion_nonempty_self (s : Set α) : ⋃ _ : s.Nonempty, s = s := by rw [iUnion_nonempty_index, biUnion_self] #align set.Union_nonempty_self Set.iUnion_nonempty_self theorem biInter_singleton (a : α) (s : α → Set β) : ⋂ x ∈ ({a} : Set α), s x = s a := iInf_singleton #align set.bInter_singleton Set.biInter_singleton theorem biInter_union (s t : Set α) (u : α → Set β) : ⋂ x ∈ s ∪ t, u x = (⋂ x ∈ s, u x) ∩ ⋂ x ∈ t, u x := iInf_union #align set.bInter_union Set.biInter_union theorem biInter_insert (a : α) (s : Set α) (t : α → Set β) : ⋂ x ∈ insert a s, t x = t a ∩ ⋂ x ∈ s, t x := by simp #align set.bInter_insert Set.biInter_insert theorem biInter_pair (a b : α) (s : α → Set β) : ⋂ x ∈ ({a, b} : Set α), s x = s a ∩ s b := by rw [biInter_insert, biInter_singleton] #align set.bInter_pair Set.biInter_pair theorem biInter_inter {ι α : Type*} {s : Set ι} (hs : s.Nonempty) (f : ι → Set α) (t : Set α) : ⋂ i ∈ s, f i ∩ t = (⋂ i ∈ s, f i) ∩ t := by haveI : Nonempty s := hs.to_subtype simp [biInter_eq_iInter, ← iInter_inter] #align set.bInter_inter Set.biInter_inter theorem inter_biInter {ι α : Type*} {s : Set ι} (hs : s.Nonempty) (f : ι → Set α) (t : Set α) : ⋂ i ∈ s, t ∩ f i = t ∩ ⋂ i ∈ s, f i := by rw [inter_comm, ← biInter_inter hs] simp [inter_comm] #align set.inter_bInter Set.inter_biInter theorem biUnion_empty (s : α → Set β) : ⋃ x ∈ (∅ : Set α), s x = ∅ := iSup_emptyset #align set.bUnion_empty Set.biUnion_empty theorem biUnion_univ (s : α → Set β) : ⋃ x ∈ @univ α, s x = ⋃ x, s x := iSup_univ #align set.bUnion_univ Set.biUnion_univ theorem biUnion_singleton (a : α) (s : α → Set β) : ⋃ x ∈ ({a} : Set α), s x = s a := iSup_singleton #align set.bUnion_singleton Set.biUnion_singleton @[simp] theorem biUnion_of_singleton (s : Set α) : ⋃ x ∈ s, {x} = s := ext <| by
simp
@[simp] theorem biUnion_of_singleton (s : Set α) : ⋃ x ∈ s, {x} = s := ext <| by
Mathlib.Data.Set.Lattice.1089_0.5mONj49h3SYSDwc
@[simp] theorem biUnion_of_singleton (s : Set α) : ⋃ x ∈ s, {x} = s
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 a : α s : Set α t : α → Set β ⊢ ⋃ x ∈ insert a s, t x = t a ∪ ⋃ x ∈ s, t x
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩ rw [@forall_update_iff ι α _ z i y fun i t => t ∈ v i] exact ⟨y_in, fun j _ => by simpa using hz j⟩ #align set.image_projection_prod Set.image_projection_prod /-! ### Unions and intersections indexed by `Prop` -/ theorem iInter_false {s : False → Set α} : iInter s = univ := iInf_false #align set.Inter_false Set.iInter_false theorem iUnion_false {s : False → Set α} : iUnion s = ∅ := iSup_false #align set.Union_false Set.iUnion_false @[simp] theorem iInter_true {s : True → Set α} : iInter s = s trivial := iInf_true #align set.Inter_true Set.iInter_true @[simp] theorem iUnion_true {s : True → Set α} : iUnion s = s trivial := iSup_true #align set.Union_true Set.iUnion_true @[simp] theorem iInter_exists {p : ι → Prop} {f : Exists p → Set α} : ⋂ x, f x = ⋂ (i) (h : p i), f ⟨i, h⟩ := iInf_exists #align set.Inter_exists Set.iInter_exists @[simp] theorem iUnion_exists {p : ι → Prop} {f : Exists p → Set α} : ⋃ x, f x = ⋃ (i) (h : p i), f ⟨i, h⟩ := iSup_exists #align set.Union_exists Set.iUnion_exists @[simp] theorem iUnion_empty : (⋃ _ : ι, ∅ : Set α) = ∅ := iSup_bot #align set.Union_empty Set.iUnion_empty @[simp] theorem iInter_univ : (⋂ _ : ι, univ : Set α) = univ := iInf_top #align set.Inter_univ Set.iInter_univ section variable {s : ι → Set α} @[simp] theorem iUnion_eq_empty : ⋃ i, s i = ∅ ↔ ∀ i, s i = ∅ := iSup_eq_bot #align set.Union_eq_empty Set.iUnion_eq_empty @[simp] theorem iInter_eq_univ : ⋂ i, s i = univ ↔ ∀ i, s i = univ := iInf_eq_top #align set.Inter_eq_univ Set.iInter_eq_univ @[simp] theorem nonempty_iUnion : (⋃ i, s i).Nonempty ↔ ∃ i, (s i).Nonempty := by simp [nonempty_iff_ne_empty] #align set.nonempty_Union Set.nonempty_iUnion --Porting note: removing `simp`. `simp` can prove it theorem nonempty_biUnion {t : Set α} {s : α → Set β} : (⋃ i ∈ t, s i).Nonempty ↔ ∃ i ∈ t, (s i).Nonempty := by simp #align set.nonempty_bUnion Set.nonempty_biUnion theorem iUnion_nonempty_index (s : Set α) (t : s.Nonempty → Set β) : ⋃ h, t h = ⋃ x ∈ s, t ⟨x, ‹_›⟩ := iSup_exists #align set.Union_nonempty_index Set.iUnion_nonempty_index end @[simp] theorem iInter_iInter_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋂ (x) (h : x = b), s x h = s b rfl := iInf_iInf_eq_left #align set.Inter_Inter_eq_left Set.iInter_iInter_eq_left @[simp] theorem iInter_iInter_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋂ (x) (h : b = x), s x h = s b rfl := iInf_iInf_eq_right #align set.Inter_Inter_eq_right Set.iInter_iInter_eq_right @[simp] theorem iUnion_iUnion_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋃ (x) (h : x = b), s x h = s b rfl := iSup_iSup_eq_left #align set.Union_Union_eq_left Set.iUnion_iUnion_eq_left @[simp] theorem iUnion_iUnion_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋃ (x) (h : b = x), s x h = s b rfl := iSup_iSup_eq_right #align set.Union_Union_eq_right Set.iUnion_iUnion_eq_right theorem iInter_or {p q : Prop} (s : p ∨ q → Set α) : ⋂ h, s h = (⋂ h : p, s (Or.inl h)) ∩ ⋂ h : q, s (Or.inr h) := iInf_or #align set.Inter_or Set.iInter_or theorem iUnion_or {p q : Prop} (s : p ∨ q → Set α) : ⋃ h, s h = (⋃ i, s (Or.inl i)) ∪ ⋃ j, s (Or.inr j) := iSup_or #align set.Union_or Set.iUnion_or /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iUnion_and {p q : Prop} (s : p ∧ q → Set α) : ⋃ h, s h = ⋃ (hp) (hq), s ⟨hp, hq⟩ := iSup_and #align set.Union_and Set.iUnion_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iInter_and {p q : Prop} (s : p ∧ q → Set α) : ⋂ h, s h = ⋂ (hp) (hq), s ⟨hp, hq⟩ := iInf_and #align set.Inter_and Set.iInter_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iUnion_comm (s : ι → ι' → Set α) : ⋃ (i) (i'), s i i' = ⋃ (i') (i), s i i' := iSup_comm #align set.Union_comm Set.iUnion_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iInter_comm (s : ι → ι' → Set α) : ⋂ (i) (i'), s i i' = ⋂ (i') (i), s i i' := iInf_comm #align set.Inter_comm Set.iInter_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iUnion₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋃ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋃ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iSup₂_comm _ #align set.Union₂_comm Set.iUnion₂_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iInter₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋂ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋂ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iInf₂_comm _ #align set.Inter₂_comm Set.iInter₂_comm @[simp] theorem biUnion_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋃ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iUnion_and, @iUnion_comm _ ι'] #align set.bUnion_and Set.biUnion_and @[simp] theorem biUnion_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋃ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iUnion_and, @iUnion_comm _ ι] #align set.bUnion_and' Set.biUnion_and' @[simp] theorem biInter_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋂ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iInter_and, @iInter_comm _ ι'] #align set.bInter_and Set.biInter_and @[simp] theorem biInter_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋂ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iInter_and, @iInter_comm _ ι] #align set.bInter_and' Set.biInter_and' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (x h) -/ @[simp] theorem iUnion_iUnion_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋃ (x) (h), s x h = s b (Or.inl rfl) ∪ ⋃ (x) (h : p x), s x (Or.inr h) := by simp only [iUnion_or, iUnion_union_distrib, iUnion_iUnion_eq_left] #align set.Union_Union_eq_or_left Set.iUnion_iUnion_eq_or_left /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (x h) -/ @[simp] theorem iInter_iInter_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋂ (x) (h), s x h = s b (Or.inl rfl) ∩ ⋂ (x) (h : p x), s x (Or.inr h) := by simp only [iInter_or, iInter_inter_distrib, iInter_iInter_eq_left] #align set.Inter_Inter_eq_or_left Set.iInter_iInter_eq_or_left /-! ### Bounded unions and intersections -/ /-- A specialization of `mem_iUnion₂`. -/ theorem mem_biUnion {s : Set α} {t : α → Set β} {x : α} {y : β} (xs : x ∈ s) (ytx : y ∈ t x) : y ∈ ⋃ x ∈ s, t x := mem_iUnion₂_of_mem xs ytx #align set.mem_bUnion Set.mem_biUnion /-- A specialization of `mem_iInter₂`. -/ theorem mem_biInter {s : Set α} {t : α → Set β} {y : β} (h : ∀ x ∈ s, y ∈ t x) : y ∈ ⋂ x ∈ s, t x := mem_iInter₂_of_mem h #align set.mem_bInter Set.mem_biInter /-- A specialization of `subset_iUnion₂`. -/ theorem subset_biUnion_of_mem {s : Set α} {u : α → Set β} {x : α} (xs : x ∈ s) : u x ⊆ ⋃ x ∈ s, u x := --Porting note: Why is this not just `subset_iUnion₂ x xs`? @subset_iUnion₂ β α (· ∈ s) (fun i _ => u i) x xs #align set.subset_bUnion_of_mem Set.subset_biUnion_of_mem /-- A specialization of `iInter₂_subset`. -/ theorem biInter_subset_of_mem {s : Set α} {t : α → Set β} {x : α} (xs : x ∈ s) : ⋂ x ∈ s, t x ⊆ t x := iInter₂_subset x xs #align set.bInter_subset_of_mem Set.biInter_subset_of_mem theorem biUnion_subset_biUnion_left {s s' : Set α} {t : α → Set β} (h : s ⊆ s') : ⋃ x ∈ s, t x ⊆ ⋃ x ∈ s', t x := iUnion₂_subset fun _ hx => subset_biUnion_of_mem <| h hx #align set.bUnion_subset_bUnion_left Set.biUnion_subset_biUnion_left theorem biInter_subset_biInter_left {s s' : Set α} {t : α → Set β} (h : s' ⊆ s) : ⋂ x ∈ s, t x ⊆ ⋂ x ∈ s', t x := subset_iInter₂ fun _ hx => biInter_subset_of_mem <| h hx #align set.bInter_subset_bInter_left Set.biInter_subset_biInter_left theorem biUnion_mono {s s' : Set α} {t t' : α → Set β} (hs : s' ⊆ s) (h : ∀ x ∈ s, t x ⊆ t' x) : ⋃ x ∈ s', t x ⊆ ⋃ x ∈ s, t' x := (biUnion_subset_biUnion_left hs).trans <| iUnion₂_mono h #align set.bUnion_mono Set.biUnion_mono theorem biInter_mono {s s' : Set α} {t t' : α → Set β} (hs : s ⊆ s') (h : ∀ x ∈ s, t x ⊆ t' x) : ⋂ x ∈ s', t x ⊆ ⋂ x ∈ s, t' x := (biInter_subset_biInter_left hs).trans <| iInter₂_mono h #align set.bInter_mono Set.biInter_mono theorem biUnion_eq_iUnion (s : Set α) (t : ∀ x ∈ s, Set β) : ⋃ x ∈ s, t x ‹_› = ⋃ x : s, t x x.2 := iSup_subtype' #align set.bUnion_eq_Union Set.biUnion_eq_iUnion theorem biInter_eq_iInter (s : Set α) (t : ∀ x ∈ s, Set β) : ⋂ x ∈ s, t x ‹_› = ⋂ x : s, t x x.2 := iInf_subtype' #align set.bInter_eq_Inter Set.biInter_eq_iInter theorem iUnion_subtype (p : α → Prop) (s : { x // p x } → Set β) : ⋃ x : { x // p x }, s x = ⋃ (x) (hx : p x), s ⟨x, hx⟩ := iSup_subtype #align set.Union_subtype Set.iUnion_subtype theorem iInter_subtype (p : α → Prop) (s : { x // p x } → Set β) : ⋂ x : { x // p x }, s x = ⋂ (x) (hx : p x), s ⟨x, hx⟩ := iInf_subtype #align set.Inter_subtype Set.iInter_subtype theorem biInter_empty (u : α → Set β) : ⋂ x ∈ (∅ : Set α), u x = univ := iInf_emptyset #align set.bInter_empty Set.biInter_empty theorem biInter_univ (u : α → Set β) : ⋂ x ∈ @univ α, u x = ⋂ x, u x := iInf_univ #align set.bInter_univ Set.biInter_univ @[simp] theorem biUnion_self (s : Set α) : ⋃ x ∈ s, s = s := Subset.antisymm (iUnion₂_subset fun _ _ => Subset.refl s) fun _ hx => mem_biUnion hx hx #align set.bUnion_self Set.biUnion_self @[simp] theorem iUnion_nonempty_self (s : Set α) : ⋃ _ : s.Nonempty, s = s := by rw [iUnion_nonempty_index, biUnion_self] #align set.Union_nonempty_self Set.iUnion_nonempty_self theorem biInter_singleton (a : α) (s : α → Set β) : ⋂ x ∈ ({a} : Set α), s x = s a := iInf_singleton #align set.bInter_singleton Set.biInter_singleton theorem biInter_union (s t : Set α) (u : α → Set β) : ⋂ x ∈ s ∪ t, u x = (⋂ x ∈ s, u x) ∩ ⋂ x ∈ t, u x := iInf_union #align set.bInter_union Set.biInter_union theorem biInter_insert (a : α) (s : Set α) (t : α → Set β) : ⋂ x ∈ insert a s, t x = t a ∩ ⋂ x ∈ s, t x := by simp #align set.bInter_insert Set.biInter_insert theorem biInter_pair (a b : α) (s : α → Set β) : ⋂ x ∈ ({a, b} : Set α), s x = s a ∩ s b := by rw [biInter_insert, biInter_singleton] #align set.bInter_pair Set.biInter_pair theorem biInter_inter {ι α : Type*} {s : Set ι} (hs : s.Nonempty) (f : ι → Set α) (t : Set α) : ⋂ i ∈ s, f i ∩ t = (⋂ i ∈ s, f i) ∩ t := by haveI : Nonempty s := hs.to_subtype simp [biInter_eq_iInter, ← iInter_inter] #align set.bInter_inter Set.biInter_inter theorem inter_biInter {ι α : Type*} {s : Set ι} (hs : s.Nonempty) (f : ι → Set α) (t : Set α) : ⋂ i ∈ s, t ∩ f i = t ∩ ⋂ i ∈ s, f i := by rw [inter_comm, ← biInter_inter hs] simp [inter_comm] #align set.inter_bInter Set.inter_biInter theorem biUnion_empty (s : α → Set β) : ⋃ x ∈ (∅ : Set α), s x = ∅ := iSup_emptyset #align set.bUnion_empty Set.biUnion_empty theorem biUnion_univ (s : α → Set β) : ⋃ x ∈ @univ α, s x = ⋃ x, s x := iSup_univ #align set.bUnion_univ Set.biUnion_univ theorem biUnion_singleton (a : α) (s : α → Set β) : ⋃ x ∈ ({a} : Set α), s x = s a := iSup_singleton #align set.bUnion_singleton Set.biUnion_singleton @[simp] theorem biUnion_of_singleton (s : Set α) : ⋃ x ∈ s, {x} = s := ext <| by simp #align set.bUnion_of_singleton Set.biUnion_of_singleton theorem biUnion_union (s t : Set α) (u : α → Set β) : ⋃ x ∈ s ∪ t, u x = (⋃ x ∈ s, u x) ∪ ⋃ x ∈ t, u x := iSup_union #align set.bUnion_union Set.biUnion_union @[simp] theorem iUnion_coe_set {α β : Type*} (s : Set α) (f : s → Set β) : ⋃ i, f i = ⋃ i ∈ s, f ⟨i, ‹i ∈ s›⟩ := iUnion_subtype _ _ #align set.Union_coe_set Set.iUnion_coe_set @[simp] theorem iInter_coe_set {α β : Type*} (s : Set α) (f : s → Set β) : ⋂ i, f i = ⋂ i ∈ s, f ⟨i, ‹i ∈ s›⟩ := iInter_subtype _ _ #align set.Inter_coe_set Set.iInter_coe_set theorem biUnion_insert (a : α) (s : Set α) (t : α → Set β) : ⋃ x ∈ insert a s, t x = t a ∪ ⋃ x ∈ s, t x := by
simp
theorem biUnion_insert (a : α) (s : Set α) (t : α → Set β) : ⋃ x ∈ insert a s, t x = t a ∪ ⋃ x ∈ s, t x := by
Mathlib.Data.Set.Lattice.1111_0.5mONj49h3SYSDwc
theorem biUnion_insert (a : α) (s : Set α) (t : α → Set β) : ⋃ x ∈ insert a s, t x = t a ∪ ⋃ x ∈ s, t x
Mathlib_Data_Set_Lattice
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 a b : α s : α → Set β ⊢ ⋃ x ∈ {a, b}, s x = s a ∪ s b
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import Mathlib.Order.CompleteBooleanAlgebra import Mathlib.Order.Directed import Mathlib.Order.GaloisConnection #align_import data.set.lattice from "leanprover-community/mathlib"@"b86832321b586c6ac23ef8cdef6a7a27e42b13bd" /-! # The set lattice This file provides usual set notation for unions and intersections, a `CompleteLattice` instance for `Set α`, and some more set constructions. ## Main declarations * `Set.iUnion`: **i**ndexed **union**. Union of an indexed family of sets. * `Set.iInter`: **i**ndexed **inter**section. Intersection of an indexed family of sets. * `Set.sInter`: **s**et **inter**section. Intersection of sets belonging to a set of sets. * `Set.sUnion`: **s**et **union**. Union of sets belonging to a set of sets. * `Set.sInter_eq_biInter`, `Set.sUnion_eq_biInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `Set.completeAtomicBooleanAlgebra`: `Set α` is a `CompleteAtomicBooleanAlgebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `Set.BooleanAlgebra`. * `Set.kernImage`: For a function `f : α → β`, `s.kernImage f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `Set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : Set α` and `s : Set (α → β)`. * `Set.iUnion_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `iUnion` * `⋂ i, s i` is called `iInter` * `⋃ i j, s i j` is called `iUnion₂`. This is an `iUnion` inside an `iUnion`. * `⋂ i j, s i j` is called `iInter₂`. This is an `iInter` inside an `iInter`. * `⋃ i ∈ s, t i` is called `biUnion` for "bounded `iUnion`". This is the special case of `iUnion₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `biInter` for "bounded `iInter`". This is the special case of `iInter₂` where `j : i ∈ s`. ## Notation * `⋃`: `Set.iUnion` * `⋂`: `Set.iInter` * `⋃₀`: `Set.sUnion` * `⋂₀`: `Set.sInter` -/ set_option autoImplicit true open Function Set universe u variable {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace Set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : InfSet (Set α) := ⟨fun s => { a | ∀ t ∈ s, a ∈ t }⟩ instance : SupSet (Set α) := ⟨fun s => { a | ∃ t ∈ s, a ∈ t }⟩ /-- Intersection of a set of sets. -/ def sInter (S : Set (Set α)) : Set α := sInf S #align set.sInter Set.sInter /-- Notation for `Set.sInter` Intersection of a set of sets. -/ prefix:110 "⋂₀ " => sInter /-- Union of a set of sets. -/ def sUnion (S : Set (Set α)) : Set α := sSup S #align set.sUnion Set.sUnion /-- Notation for `Set.sUnion`. Union of a set of sets. -/ prefix:110 "⋃₀ " => sUnion @[simp] theorem mem_sInter {x : α} {S : Set (Set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sInter Set.mem_sInter @[simp] theorem mem_sUnion {x : α} {S : Set (Set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := Iff.rfl #align set.mem_sUnion Set.mem_sUnion /-- Indexed union of a family of sets -/ def iUnion (s : ι → Set β) : Set β := iSup s #align set.Union Set.iUnion /-- Indexed intersection of a family of sets -/ def iInter (s : ι → Set β) : Set β := iInf s #align set.Inter Set.iInter /-- Notation for `Set.iUnion`. Indexed union of a family of sets -/ notation3 "⋃ "(...)", "r:60:(scoped f => iUnion f) => r /-- Notation for `Set.iInter`. Indexed intersection of a family of sets -/ notation3 "⋂ "(...)", "r:60:(scoped f => iInter f) => r section delaborators open Lean Lean.PrettyPrinter.Delaborator /-- Delaborator for indexed unions. -/ @[delab app.Set.iUnion] def iUnion_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋃ (_ : $dom), $body) else if prop || ppTypes then `(⋃ ($x:ident : $dom), $body) else `(⋃ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋃ $x:ident, ⋃ (_ : $y:ident ∈ $s), $body) | `(⋃ ($x:ident : $_), ⋃ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋃ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx /-- Delaborator for indexed intersections. -/ @[delab app.Set.iInter] def sInter_delab : Delab := whenPPOption Lean.getPPNotation do let #[_, ι, f] := (← SubExpr.getExpr).getAppArgs | failure unless f.isLambda do failure let prop ← Meta.isProp ι let dep := f.bindingBody!.hasLooseBVar 0 let ppTypes ← getPPOption getPPFunBinderTypes let stx ← SubExpr.withAppArg do let dom ← SubExpr.withBindingDomain delab withBindingBodyUnusedName $ fun x => do let x : TSyntax `ident := .mk x let body ← delab if prop && !dep then `(⋂ (_ : $dom), $body) else if prop || ppTypes then `(⋂ ($x:ident : $dom), $body) else `(⋂ $x:ident, $body) -- Cute binders let stx : Term ← match stx with | `(⋂ $x:ident, ⋂ (_ : $y:ident ∈ $s), $body) | `(⋂ ($x:ident : $_), ⋂ (_ : $y:ident ∈ $s), $body) => if x == y then `(⋂ $x:ident ∈ $s, $body) else pure stx | _ => pure stx return stx end delaborators @[simp] theorem sSup_eq_sUnion (S : Set (Set α)) : sSup S = ⋃₀S := rfl #align set.Sup_eq_sUnion Set.sSup_eq_sUnion @[simp] theorem sInf_eq_sInter (S : Set (Set α)) : sInf S = ⋂₀ S := rfl #align set.Inf_eq_sInter Set.sInf_eq_sInter @[simp] theorem iSup_eq_iUnion (s : ι → Set α) : iSup s = iUnion s := rfl #align set.supr_eq_Union Set.iSup_eq_iUnion @[simp] theorem iInf_eq_iInter (s : ι → Set α) : iInf s = iInter s := rfl #align set.infi_eq_Inter Set.iInf_eq_iInter @[simp] theorem mem_iUnion {x : α} {s : ι → Set α} : (x ∈ ⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨fun ⟨_, ⟨⟨a, (t_eq : s a = _)⟩, (h : x ∈ _)⟩⟩ => ⟨a, t_eq.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ #align set.mem_Union Set.mem_iUnion @[simp] theorem mem_iInter {x : α} {s : ι → Set α} : (x ∈ ⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨fun (h : ∀ a ∈ { a : Set α | ∃ i, s i = a }, x ∈ a) a => h (s a) ⟨a, rfl⟩, fun h _ ⟨a, (eq : s a = _)⟩ => eq ▸ h a⟩ #align set.mem_Inter Set.mem_iInter theorem mem_iUnion₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋃ (i) (j), s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw [mem_iUnion] #align set.mem_Union₂ Set.mem_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂ {x : γ} {s : ∀ i, κ i → Set γ} : (x ∈ ⋂ (i) (j), s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw [mem_iInter] #align set.mem_Inter₂ Set.mem_iInter₂ theorem mem_iUnion_of_mem {s : ι → Set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_iUnion.2 ⟨i, ha⟩ #align set.mem_Union_of_mem Set.mem_iUnion_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iUnion₂_of_mem {s : ∀ i, κ i → Set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ (i) (j), s i j := mem_iUnion₂.2 ⟨i, j, ha⟩ #align set.mem_Union₂_of_mem Set.mem_iUnion₂_of_mem theorem mem_iInter_of_mem {s : ι → Set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_iInter.2 h #align set.mem_Inter_of_mem Set.mem_iInter_of_mem /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem mem_iInter₂_of_mem {s : ∀ i, κ i → Set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ (i) (j), s i j := mem_iInter₂.2 h #align set.mem_Inter₂_of_mem Set.mem_iInter₂_of_mem instance Set.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra (Set α) := { instBooleanAlgebraSet with le_sSup := fun s t t_in a a_in => ⟨t, t_in, a_in⟩ sSup_le := fun s t h a ⟨t', ⟨t'_in, a_in⟩⟩ => h t' t'_in a_in le_sInf := fun s t h a a_in t' t'_in => h t' t'_in a_in sInf_le := fun s t t_in a h => h _ t_in iInf_iSup_eq := by intros; ext; simp [Classical.skolem] } /-- `kernImage f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kernImage (f : α → β) (s : Set α) : Set β := { y | ∀ ⦃x⦄, f x = y → x ∈ s } #align set.kern_image Set.kernImage lemma subset_kernImage_iff {f : α → β} : s ⊆ kernImage f t ↔ f ⁻¹' s ⊆ t := ⟨fun h _ hx ↦ h hx rfl, fun h _ hx y hy ↦ h (show f y ∈ s from hy.symm ▸ hx)⟩ section GaloisConnection variable {f : α → β} protected theorem image_preimage : GaloisConnection (image f) (preimage f) := fun _ _ => image_subset_iff #align set.image_preimage Set.image_preimage protected theorem preimage_kernImage : GaloisConnection (preimage f) (kernImage f) := fun _ _ => subset_kernImage_iff.symm #align set.preimage_kern_image Set.preimage_kernImage end GaloisConnection section kernImage variable {f : α → β} lemma kernImage_mono : Monotone (kernImage f) := Set.preimage_kernImage.monotone_u lemma kernImage_eq_compl {s : Set α} : kernImage f s = (f '' sᶜ)ᶜ := Set.preimage_kernImage.u_unique (Set.image_preimage.compl) (fun t ↦ compl_compl (f ⁻¹' t) ▸ Set.preimage_compl) lemma kernImage_compl {s : Set α} : kernImage f (sᶜ) = (f '' s)ᶜ := by rw [kernImage_eq_compl, compl_compl] lemma kernImage_empty : kernImage f ∅ = (range f)ᶜ := by rw [kernImage_eq_compl, compl_empty, image_univ] lemma kernImage_preimage_eq_iff {s : Set β} : kernImage f (f ⁻¹' s) = s ↔ (range f)ᶜ ⊆ s := by rw [kernImage_eq_compl, ← preimage_compl, compl_eq_comm, eq_comm, image_preimage_eq_iff, compl_subset_comm] lemma compl_range_subset_kernImage {s : Set α} : (range f)ᶜ ⊆ kernImage f s := by rw [← kernImage_empty] exact kernImage_mono (empty_subset _) lemma kernImage_union_preimage {s : Set α} {t : Set β} : kernImage f (s ∪ f ⁻¹' t) = kernImage f s ∪ t := by rw [kernImage_eq_compl, kernImage_eq_compl, compl_union, ← preimage_compl, image_inter_preimage, compl_inter, compl_compl] lemma kernImage_preimage_union {s : Set α} {t : Set β} : kernImage f (f ⁻¹' t ∪ s) = t ∪ kernImage f s := by rw [union_comm, kernImage_union_preimage, union_comm] end kernImage /-! ### Union and intersection over an indexed family of sets -/ instance : OrderTop (Set α) where top := univ le_top := by simp @[congr] theorem iUnion_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iUnion f₁ = iUnion f₂ := iSup_congr_Prop pq f #align set.Union_congr_Prop Set.iUnion_congr_Prop @[congr] theorem iInter_congr_Prop {p q : Prop} {f₁ : p → Set α} {f₂ : q → Set α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInter f₁ = iInter f₂ := iInf_congr_Prop pq f #align set.Inter_congr_Prop Set.iInter_congr_Prop theorem iUnion_plift_up (f : PLift ι → Set α) : ⋃ i, f (PLift.up i) = ⋃ i, f i := iSup_plift_up _ #align set.Union_plift_up Set.iUnion_plift_up theorem iUnion_plift_down (f : ι → Set α) : ⋃ i, f (PLift.down i) = ⋃ i, f i := iSup_plift_down _ #align set.Union_plift_down Set.iUnion_plift_down theorem iInter_plift_up (f : PLift ι → Set α) : ⋂ i, f (PLift.up i) = ⋂ i, f i := iInf_plift_up _ #align set.Inter_plift_up Set.iInter_plift_up theorem iInter_plift_down (f : ι → Set α) : ⋂ i, f (PLift.down i) = ⋂ i, f i := iInf_plift_down _ #align set.Inter_plift_down Set.iInter_plift_down theorem iUnion_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋃ _ : p, s = if p then s else ∅ := iSup_eq_if _ #align set.Union_eq_if Set.iUnion_eq_if theorem iUnion_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋃ h : p, s h = if h : p then s h else ∅ := iSup_eq_dif _ #align set.Union_eq_dif Set.iUnion_eq_dif theorem iInter_eq_if {p : Prop} [Decidable p] (s : Set α) : ⋂ _ : p, s = if p then s else univ := iInf_eq_if _ #align set.Inter_eq_if Set.iInter_eq_if theorem iInf_eq_dif {p : Prop} [Decidable p] (s : p → Set α) : ⋂ h : p, s h = if h : p then s h else univ := _root_.iInf_eq_dif _ #align set.Infi_eq_dif Set.iInf_eq_dif theorem exists_set_mem_of_union_eq_top {ι : Type*} (t : Set ι) (s : ι → Set β) (w : ⋃ i ∈ t, s i = ⊤) (x : β) : ∃ i ∈ t, x ∈ s i := by have p : x ∈ ⊤ := Set.mem_univ x rw [← w, Set.mem_iUnion] at p simpa using p #align set.exists_set_mem_of_union_eq_top Set.exists_set_mem_of_union_eq_top theorem nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : Set ι) (s : ι → Set α) (H : Nonempty α) (w : ⋃ i ∈ t, s i = ⊤) : t.Nonempty := by obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some exact ⟨x, m⟩ #align set.nonempty_of_union_eq_top_of_nonempty Set.nonempty_of_union_eq_top_of_nonempty theorem nonempty_of_nonempty_iUnion {s : ι → Set α} (h_Union : (⋃ i, s i).Nonempty) : Nonempty ι := by obtain ⟨x, hx⟩ := h_Union exact ⟨Classical.choose $ mem_iUnion.mp hx⟩ theorem nonempty_of_nonempty_iUnion_eq_univ {s : ι → Set α} [Nonempty α] (h_Union : ⋃ i, s i = univ) : Nonempty ι := nonempty_of_nonempty_iUnion (s := s) (by simpa only [h_Union] using univ_nonempty) theorem setOf_exists (p : ι → β → Prop) : { x | ∃ i, p i x } = ⋃ i, { x | p i x } := ext fun _ => mem_iUnion.symm #align set.set_of_exists Set.setOf_exists theorem setOf_forall (p : ι → β → Prop) : { x | ∀ i, p i x } = ⋂ i, { x | p i x } := ext fun _ => mem_iInter.symm #align set.set_of_forall Set.setOf_forall theorem iUnion_subset {s : ι → Set α} {t : Set α} (h : ∀ i, s i ⊆ t) : ⋃ i, s i ⊆ t := iSup_le h #align set.Union_subset Set.iUnion_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset {s : ∀ i, κ i → Set α} {t : Set α} (h : ∀ i j, s i j ⊆ t) : ⋃ (i) (j), s i j ⊆ t := iUnion_subset fun x => iUnion_subset (h x) #align set.Union₂_subset Set.iUnion₂_subset theorem subset_iInter {t : Set β} {s : ι → Set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := le_iInf h #align set.subset_Inter Set.subset_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iInter₂ {s : Set α} {t : ∀ i, κ i → Set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ (i) (j), t i j := subset_iInter fun x => subset_iInter <| h x #align set.subset_Inter₂ Set.subset_iInter₂ @[simp] theorem iUnion_subset_iff {s : ι → Set α} {t : Set α} : ⋃ i, s i ⊆ t ↔ ∀ i, s i ⊆ t := ⟨fun h _ => Subset.trans (le_iSup s _) h, iUnion_subset⟩ #align set.Union_subset_iff Set.iUnion_subset_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_subset_iff {s : ∀ i, κ i → Set α} {t : Set α} : ⋃ (i) (j), s i j ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw [iUnion_subset_iff] #align set.Union₂_subset_iff Set.iUnion₂_subset_iff @[simp] theorem subset_iInter_iff {s : Set α} {t : ι → Set α} : (s ⊆ ⋂ i, t i) ↔ ∀ i, s ⊆ t i := le_iInf_iff #align set.subset_Inter_iff Set.subset_iInter_iff /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ --Porting note: removing `simp`. `simp` can prove it theorem subset_iInter₂_iff {s : Set α} {t : ∀ i, κ i → Set α} : (s ⊆ ⋂ (i) (j), t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw [subset_iInter_iff] #align set.subset_Inter₂_iff Set.subset_iInter₂_iff theorem subset_iUnion : ∀ (s : ι → Set β) (i : ι), s i ⊆ ⋃ i, s i := le_iSup #align set.subset_Union Set.subset_iUnion theorem iInter_subset : ∀ (s : ι → Set β) (i : ι), ⋂ i, s i ⊆ s i := iInf_le #align set.Inter_subset Set.iInter_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem subset_iUnion₂ {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ (i') (j'), s i' j' := le_iSup₂ i j #align set.subset_Union₂ Set.subset_iUnion₂ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_subset {s : ∀ i, κ i → Set α} (i : ι) (j : κ i) : ⋂ (i) (j), s i j ⊆ s i j := iInf₂_le i j #align set.Inter₂_subset Set.iInter₂_subset /-- This rather trivial consequence of `subset_iUnion`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem subset_iUnion_of_subset {s : Set α} {t : ι → Set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := le_iSup_of_le i h #align set.subset_Union_of_subset Set.subset_iUnion_of_subset /-- This rather trivial consequence of `iInter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ theorem iInter_subset_of_subset {s : ι → Set α} {t : Set α} (i : ι) (h : s i ⊆ t) : ⋂ i, s i ⊆ t := iInf_le_of_le i h #align set.Inter_subset_of_subset Set.iInter_subset_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `subset_iUnion₂` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem subset_iUnion₂_of_subset {s : Set α} {t : ∀ i, κ i → Set α} (i : ι) (j : κ i) (h : s ⊆ t i j) : s ⊆ ⋃ (i) (j), t i j := le_iSup₂_of_le i j h #align set.subset_Union₂_of_subset Set.subset_iUnion₂_of_subset /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /-- This rather trivial consequence of `iInter₂_subset` is convenient with `apply`, and has `i` and `j` explicit for this purpose. -/ theorem iInter₂_subset_of_subset {s : ∀ i, κ i → Set α} {t : Set α} (i : ι) (j : κ i) (h : s i j ⊆ t) : ⋂ (i) (j), s i j ⊆ t := iInf₂_le_of_le i j h #align set.Inter₂_subset_of_subset Set.iInter₂_subset_of_subset theorem iUnion_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono h #align set.Union_mono Set.iUnion_mono @[gcongr] theorem iUnion_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iUnion s ⊆ iUnion t := iSup_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iUnion₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋃ (i) (j), s i j ⊆ ⋃ (i) (j), t i j := iSup₂_mono h #align set.Union₂_mono Set.iUnion₂_mono theorem iInter_mono {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : ⋂ i, s i ⊆ ⋂ i, t i := iInf_mono h #align set.Inter_mono Set.iInter_mono @[gcongr] theorem iInter_mono'' {s t : ι → Set α} (h : ∀ i, s i ⊆ t i) : iInter s ⊆ iInter t := iInf_mono h /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem iInter₂_mono {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j ⊆ t i j) : ⋂ (i) (j), s i j ⊆ ⋂ (i) (j), t i j := iInf₂_mono h #align set.Inter₂_mono Set.iInter₂_mono theorem iUnion_mono' {s : ι → Set α} {t : ι₂ → Set α} (h : ∀ i, ∃ j, s i ⊆ t j) : ⋃ i, s i ⊆ ⋃ i, t i := iSup_mono' h #align set.Union_mono' Set.iUnion_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iUnion₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : ⋃ (i) (j), s i j ⊆ ⋃ (i') (j'), t i' j' := iSup₂_mono' h #align set.Union₂_mono' Set.iUnion₂_mono' theorem iInter_mono' {s : ι → Set α} {t : ι' → Set α} (h : ∀ j, ∃ i, s i ⊆ t j) : ⋂ i, s i ⊆ ⋂ j, t j := Set.subset_iInter fun j => let ⟨i, hi⟩ := h j iInter_subset_of_subset i hi #align set.Inter_mono' Set.iInter_mono' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' j') -/ theorem iInter₂_mono' {s : ∀ i, κ i → Set α} {t : ∀ i', κ' i' → Set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : ⋂ (i) (j), s i j ⊆ ⋂ (i') (j'), t i' j' := subset_iInter₂_iff.2 fun i' j' => let ⟨_, _, hst⟩ := h i' j' (iInter₂_subset _ _).trans hst #align set.Inter₂_mono' Set.iInter₂_mono' theorem iUnion₂_subset_iUnion (κ : ι → Sort*) (s : ι → Set α) : ⋃ (i) (_ : κ i), s i ⊆ ⋃ i, s i := iUnion_mono fun _ => iUnion_subset fun _ => Subset.rfl #align set.Union₂_subset_Union Set.iUnion₂_subset_iUnion theorem iInter_subset_iInter₂ (κ : ι → Sort*) (s : ι → Set α) : ⋂ i, s i ⊆ ⋂ (i) (_ : κ i), s i := iInter_mono fun _ => subset_iInter fun _ => Subset.rfl #align set.Inter_subset_Inter₂ Set.iInter_subset_iInter₂ theorem iUnion_setOf (P : ι → α → Prop) : ⋃ i, { x : α | P i x } = { x : α | ∃ i, P i x } := by ext exact mem_iUnion #align set.Union_set_of Set.iUnion_setOf theorem iInter_setOf (P : ι → α → Prop) : ⋂ i, { x : α | P i x } = { x : α | ∀ i, P i x } := by ext exact mem_iInter #align set.Inter_set_of Set.iInter_setOf theorem iUnion_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋃ x, f x = ⋃ y, g y := h1.iSup_congr h h2 #align set.Union_congr_of_surjective Set.iUnion_congr_of_surjective theorem iInter_congr_of_surjective {f : ι → Set α} {g : ι₂ → Set α} (h : ι → ι₂) (h1 : Surjective h) (h2 : ∀ x, g (h x) = f x) : ⋂ x, f x = ⋂ y, g y := h1.iInf_congr h h2 #align set.Inter_congr_of_surjective Set.iInter_congr_of_surjective lemma iUnion_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋃ i, s i = ⋃ i, t i := iSup_congr h #align set.Union_congr Set.iUnion_congr lemma iInter_congr {s t : ι → Set α} (h : ∀ i, s i = t i) : ⋂ i, s i = ⋂ i, t i := iInf_congr h #align set.Inter_congr Set.iInter_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iUnion₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋃ (i) (j), s i j = ⋃ (i) (j), t i j := iUnion_congr fun i => iUnion_congr <| h i #align set.Union₂_congr Set.iUnion₂_congr /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ lemma iInter₂_congr {s t : ∀ i, κ i → Set α} (h : ∀ i j, s i j = t i j) : ⋂ (i) (j), s i j = ⋂ (i) (j), t i j := iInter_congr fun i => iInter_congr <| h i #align set.Inter₂_congr Set.iInter₂_congr section Nonempty variable [Nonempty ι] {f : ι → Set α} {s : Set α} lemma iUnion_const (s : Set β) : ⋃ _ : ι, s = s := iSup_const #align set.Union_const Set.iUnion_const lemma iInter_const (s : Set β) : ⋂ _ : ι, s = s := iInf_const #align set.Inter_const Set.iInter_const lemma iUnion_eq_const (hf : ∀ i, f i = s) : ⋃ i, f i = s := (iUnion_congr hf).trans $ iUnion_const _ #align set.Union_eq_const Set.iUnion_eq_const lemma iInter_eq_const (hf : ∀ i, f i = s) : ⋂ i, f i = s := (iInter_congr hf).trans $ iInter_const _ #align set.Inter_eq_const Set.iInter_eq_const end Nonempty @[simp] theorem compl_iUnion (s : ι → Set β) : (⋃ i, s i)ᶜ = ⋂ i, (s i)ᶜ := compl_iSup #align set.compl_Union Set.compl_iUnion /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iUnion₂ (s : ∀ i, κ i → Set α) : (⋃ (i) (j), s i j)ᶜ = ⋂ (i) (j), (s i j)ᶜ := by simp_rw [compl_iUnion] #align set.compl_Union₂ Set.compl_iUnion₂ @[simp] theorem compl_iInter (s : ι → Set β) : (⋂ i, s i)ᶜ = ⋃ i, (s i)ᶜ := compl_iInf #align set.compl_Inter Set.compl_iInter /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/ theorem compl_iInter₂ (s : ∀ i, κ i → Set α) : (⋂ (i) (j), s i j)ᶜ = ⋃ (i) (j), (s i j)ᶜ := by simp_rw [compl_iInter] #align set.compl_Inter₂ Set.compl_iInter₂ -- classical -- complete_boolean_algebra theorem iUnion_eq_compl_iInter_compl (s : ι → Set β) : ⋃ i, s i = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_iInter, compl_compl] #align set.Union_eq_compl_Inter_compl Set.iUnion_eq_compl_iInter_compl -- classical -- complete_boolean_algebra theorem iInter_eq_compl_iUnion_compl (s : ι → Set β) : ⋂ i, s i = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_iUnion, compl_compl] #align set.Inter_eq_compl_Union_compl Set.iInter_eq_compl_iUnion_compl theorem inter_iUnion (s : Set β) (t : ι → Set β) : (s ∩ ⋃ i, t i) = ⋃ i, s ∩ t i := inf_iSup_eq _ _ #align set.inter_Union Set.inter_iUnion theorem iUnion_inter (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := iSup_inf_eq _ _ #align set.Union_inter Set.iUnion_inter theorem iUnion_union_distrib (s : ι → Set β) (t : ι → Set β) : ⋃ i, s i ∪ t i = (⋃ i, s i) ∪ ⋃ i, t i := iSup_sup_eq #align set.Union_union_distrib Set.iUnion_union_distrib theorem iInter_inter_distrib (s : ι → Set β) (t : ι → Set β) : ⋂ i, s i ∩ t i = (⋂ i, s i) ∩ ⋂ i, t i := iInf_inf_eq #align set.Inter_inter_distrib Set.iInter_inter_distrib theorem union_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∪ ⋃ i, t i) = ⋃ i, s ∪ t i := sup_iSup #align set.union_Union Set.union_iUnion theorem iUnion_union [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := iSup_sup #align set.Union_union Set.iUnion_union theorem inter_iInter [Nonempty ι] (s : Set β) (t : ι → Set β) : (s ∩ ⋂ i, t i) = ⋂ i, s ∩ t i := inf_iInf #align set.inter_Inter Set.inter_iInter theorem iInter_inter [Nonempty ι] (s : Set β) (t : ι → Set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := iInf_inf #align set.Inter_inter Set.iInter_inter -- classical theorem union_iInter (s : Set β) (t : ι → Set β) : (s ∪ ⋂ i, t i) = ⋂ i, s ∪ t i := sup_iInf_eq _ _ #align set.union_Inter Set.union_iInter theorem iInter_union (s : ι → Set β) (t : Set β) : (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t := iInf_sup_eq _ _ #align set.Inter_union Set.iInter_union theorem iUnion_diff (s : Set β) (t : ι → Set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := iUnion_inter _ _ #align set.Union_diff Set.iUnion_diff theorem diff_iUnion [Nonempty ι] (s : Set β) (t : ι → Set β) : (s \ ⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_iUnion, inter_iInter]; rfl #align set.diff_Union Set.diff_iUnion theorem diff_iInter (s : Set β) (t : ι → Set β) : (s \ ⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_iInter, inter_iUnion]; rfl #align set.diff_Inter Set.diff_iInter theorem directed_on_iUnion {r} {f : ι → Set α} (hd : Directed (· ⊆ ·) f) (h : ∀ x, DirectedOn r (f x)) : DirectedOn r (⋃ x, f x) := by simp only [DirectedOn, exists_prop, mem_iUnion, exists_imp] exact fun a₁ b₁ fb₁ a₂ b₂ fb₂ => let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂ let ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ #align set.directed_on_Union Set.directed_on_iUnion theorem iUnion_inter_subset {ι α} {s t : ι → Set α} : ⋃ i, s i ∩ t i ⊆ (⋃ i, s i) ∩ ⋃ i, t i := le_iSup_inf_iSup s t #align set.Union_inter_subset Set.iUnion_inter_subset theorem iUnion_inter_of_monotone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_monotone hs ht #align set.Union_inter_of_monotone Set.iUnion_inter_of_monotone theorem iUnion_inter_of_antitone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋃ i, s i ∩ t i = (⋃ i, s i) ∩ ⋃ i, t i := iSup_inf_of_antitone hs ht #align set.Union_inter_of_antitone Set.iUnion_inter_of_antitone theorem iInter_union_of_monotone {ι α} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {s t : ι → Set α} (hs : Monotone s) (ht : Monotone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_monotone hs ht #align set.Inter_union_of_monotone Set.iInter_union_of_monotone theorem iInter_union_of_antitone {ι α} [Preorder ι] [IsDirected ι (· ≤ ·)] {s t : ι → Set α} (hs : Antitone s) (ht : Antitone t) : ⋂ i, s i ∪ t i = (⋂ i, s i) ∪ ⋂ i, t i := iInf_sup_of_antitone hs ht #align set.Inter_union_of_antitone Set.iInter_union_of_antitone /-- An equality version of this lemma is `iUnion_iInter_of_monotone` in `Data.Set.Finite`. -/ theorem iUnion_iInter_subset {s : ι → ι' → Set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := iSup_iInf_le_iInf_iSup (flip s) #align set.Union_Inter_subset Set.iUnion_iInter_subset theorem iUnion_option {ι} (s : Option ι → Set α) : ⋃ o, s o = s none ∪ ⋃ i, s (some i) := iSup_option s #align set.Union_option Set.iUnion_option theorem iInter_option {ι} (s : Option ι → Set α) : ⋂ o, s o = s none ∩ ⋂ i, s (some i) := iInf_option s #align set.Inter_option Set.iInter_option section variable (p : ι → Prop) [DecidablePred p] theorem iUnion_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋃ i, (if h : p i then f i h else g i h) = (⋃ (i) (h : p i), f i h) ∪ ⋃ (i) (h : ¬p i), g i h := iSup_dite _ _ _ #align set.Union_dite Set.iUnion_dite theorem iUnion_ite (f g : ι → Set α) : ⋃ i, (if p i then f i else g i) = (⋃ (i) (_ : p i), f i) ∪ ⋃ (i) (_ : ¬p i), g i := iUnion_dite _ _ _ #align set.Union_ite Set.iUnion_ite theorem iInter_dite (f : ∀ i, p i → Set α) (g : ∀ i, ¬p i → Set α) : ⋂ i, (if h : p i then f i h else g i h) = (⋂ (i) (h : p i), f i h) ∩ ⋂ (i) (h : ¬p i), g i h := iInf_dite _ _ _ #align set.Inter_dite Set.iInter_dite theorem iInter_ite (f g : ι → Set α) : ⋂ i, (if p i then f i else g i) = (⋂ (i) (_ : p i), f i) ∩ ⋂ (i) (_ : ¬p i), g i := iInter_dite _ _ _ #align set.Inter_ite Set.iInter_ite end theorem image_projection_prod {ι : Type*} {α : ι → Type*} {v : ∀ i : ι, Set (α i)} (hv : (pi univ v).Nonempty) (i : ι) : ((fun x : ∀ i : ι, α i => x i) '' ⋂ k, (fun x : ∀ j : ι, α j => x k) ⁻¹' v k) = v i := by classical apply Subset.antisymm · simp [iInter_subset] · intro y y_in simp only [mem_image, mem_iInter, mem_preimage] rcases hv with ⟨z, hz⟩ refine' ⟨Function.update z i y, _, update_same i y z⟩ rw [@forall_update_iff ι α _ z i y fun i t => t ∈ v i] exact ⟨y_in, fun j _ => by simpa using hz j⟩ #align set.image_projection_prod Set.image_projection_prod /-! ### Unions and intersections indexed by `Prop` -/ theorem iInter_false {s : False → Set α} : iInter s = univ := iInf_false #align set.Inter_false Set.iInter_false theorem iUnion_false {s : False → Set α} : iUnion s = ∅ := iSup_false #align set.Union_false Set.iUnion_false @[simp] theorem iInter_true {s : True → Set α} : iInter s = s trivial := iInf_true #align set.Inter_true Set.iInter_true @[simp] theorem iUnion_true {s : True → Set α} : iUnion s = s trivial := iSup_true #align set.Union_true Set.iUnion_true @[simp] theorem iInter_exists {p : ι → Prop} {f : Exists p → Set α} : ⋂ x, f x = ⋂ (i) (h : p i), f ⟨i, h⟩ := iInf_exists #align set.Inter_exists Set.iInter_exists @[simp] theorem iUnion_exists {p : ι → Prop} {f : Exists p → Set α} : ⋃ x, f x = ⋃ (i) (h : p i), f ⟨i, h⟩ := iSup_exists #align set.Union_exists Set.iUnion_exists @[simp] theorem iUnion_empty : (⋃ _ : ι, ∅ : Set α) = ∅ := iSup_bot #align set.Union_empty Set.iUnion_empty @[simp] theorem iInter_univ : (⋂ _ : ι, univ : Set α) = univ := iInf_top #align set.Inter_univ Set.iInter_univ section variable {s : ι → Set α} @[simp] theorem iUnion_eq_empty : ⋃ i, s i = ∅ ↔ ∀ i, s i = ∅ := iSup_eq_bot #align set.Union_eq_empty Set.iUnion_eq_empty @[simp] theorem iInter_eq_univ : ⋂ i, s i = univ ↔ ∀ i, s i = univ := iInf_eq_top #align set.Inter_eq_univ Set.iInter_eq_univ @[simp] theorem nonempty_iUnion : (⋃ i, s i).Nonempty ↔ ∃ i, (s i).Nonempty := by simp [nonempty_iff_ne_empty] #align set.nonempty_Union Set.nonempty_iUnion --Porting note: removing `simp`. `simp` can prove it theorem nonempty_biUnion {t : Set α} {s : α → Set β} : (⋃ i ∈ t, s i).Nonempty ↔ ∃ i ∈ t, (s i).Nonempty := by simp #align set.nonempty_bUnion Set.nonempty_biUnion theorem iUnion_nonempty_index (s : Set α) (t : s.Nonempty → Set β) : ⋃ h, t h = ⋃ x ∈ s, t ⟨x, ‹_›⟩ := iSup_exists #align set.Union_nonempty_index Set.iUnion_nonempty_index end @[simp] theorem iInter_iInter_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋂ (x) (h : x = b), s x h = s b rfl := iInf_iInf_eq_left #align set.Inter_Inter_eq_left Set.iInter_iInter_eq_left @[simp] theorem iInter_iInter_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋂ (x) (h : b = x), s x h = s b rfl := iInf_iInf_eq_right #align set.Inter_Inter_eq_right Set.iInter_iInter_eq_right @[simp] theorem iUnion_iUnion_eq_left {b : β} {s : ∀ x : β, x = b → Set α} : ⋃ (x) (h : x = b), s x h = s b rfl := iSup_iSup_eq_left #align set.Union_Union_eq_left Set.iUnion_iUnion_eq_left @[simp] theorem iUnion_iUnion_eq_right {b : β} {s : ∀ x : β, b = x → Set α} : ⋃ (x) (h : b = x), s x h = s b rfl := iSup_iSup_eq_right #align set.Union_Union_eq_right Set.iUnion_iUnion_eq_right theorem iInter_or {p q : Prop} (s : p ∨ q → Set α) : ⋂ h, s h = (⋂ h : p, s (Or.inl h)) ∩ ⋂ h : q, s (Or.inr h) := iInf_or #align set.Inter_or Set.iInter_or theorem iUnion_or {p q : Prop} (s : p ∨ q → Set α) : ⋃ h, s h = (⋃ i, s (Or.inl i)) ∪ ⋃ j, s (Or.inr j) := iSup_or #align set.Union_or Set.iUnion_or /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iUnion_and {p q : Prop} (s : p ∧ q → Set α) : ⋃ h, s h = ⋃ (hp) (hq), s ⟨hp, hq⟩ := iSup_and #align set.Union_and Set.iUnion_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (hp hq) -/ theorem iInter_and {p q : Prop} (s : p ∧ q → Set α) : ⋂ h, s h = ⋂ (hp) (hq), s ⟨hp, hq⟩ := iInf_and #align set.Inter_and Set.iInter_and /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iUnion_comm (s : ι → ι' → Set α) : ⋃ (i) (i'), s i i' = ⋃ (i') (i), s i i' := iSup_comm #align set.Union_comm Set.iUnion_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i i') -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i' i) -/ theorem iInter_comm (s : ι → ι' → Set α) : ⋂ (i) (i'), s i i' = ⋂ (i') (i), s i i' := iInf_comm #align set.Inter_comm Set.iInter_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iUnion₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋃ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋃ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iSup₂_comm _ #align set.Union₂_comm Set.iUnion₂_comm /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/ /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/ theorem iInter₂_comm (s : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → Set α) : ⋂ (i₁) (j₁) (i₂) (j₂), s i₁ j₁ i₂ j₂ = ⋂ (i₂) (j₂) (i₁) (j₁), s i₁ j₁ i₂ j₂ := iInf₂_comm _ #align set.Inter₂_comm Set.iInter₂_comm @[simp] theorem biUnion_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋃ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iUnion_and, @iUnion_comm _ ι'] #align set.bUnion_and Set.biUnion_and @[simp] theorem biUnion_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋃ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋃ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iUnion_and, @iUnion_comm _ ι] #align set.bUnion_and' Set.biUnion_and' @[simp] theorem biInter_and (p : ι → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p x ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h = ⋂ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [iInter_and, @iInter_comm _ ι'] #align set.bInter_and Set.biInter_and @[simp] theorem biInter_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : ∀ x y, p y ∧ q x y → Set α) : ⋂ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h = ⋂ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [iInter_and, @iInter_comm _ ι] #align set.bInter_and' Set.biInter_and' /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (x h) -/ @[simp] theorem iUnion_iUnion_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋃ (x) (h), s x h = s b (Or.inl rfl) ∪ ⋃ (x) (h : p x), s x (Or.inr h) := by simp only [iUnion_or, iUnion_union_distrib, iUnion_iUnion_eq_left] #align set.Union_Union_eq_or_left Set.iUnion_iUnion_eq_or_left /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (x h) -/ @[simp] theorem iInter_iInter_eq_or_left {b : β} {p : β → Prop} {s : ∀ x : β, x = b ∨ p x → Set α} : ⋂ (x) (h), s x h = s b (Or.inl rfl) ∩ ⋂ (x) (h : p x), s x (Or.inr h) := by simp only [iInter_or, iInter_inter_distrib, iInter_iInter_eq_left] #align set.Inter_Inter_eq_or_left Set.iInter_iInter_eq_or_left /-! ### Bounded unions and intersections -/ /-- A specialization of `mem_iUnion₂`. -/ theorem mem_biUnion {s : Set α} {t : α → Set β} {x : α} {y : β} (xs : x ∈ s) (ytx : y ∈ t x) : y ∈ ⋃ x ∈ s, t x := mem_iUnion₂_of_mem xs ytx #align set.mem_bUnion Set.mem_biUnion /-- A specialization of `mem_iInter₂`. -/ theorem mem_biInter {s : Set α} {t : α → Set β} {y : β} (h : ∀ x ∈ s, y ∈ t x) : y ∈ ⋂ x ∈ s, t x := mem_iInter₂_of_mem h #align set.mem_bInter Set.mem_biInter /-- A specialization of `subset_iUnion₂`. -/ theorem subset_biUnion_of_mem {s : Set α} {u : α → Set β} {x : α} (xs : x ∈ s) : u x ⊆ ⋃ x ∈ s, u x := --Porting note: Why is this not just `subset_iUnion₂ x xs`? @subset_iUnion₂ β α (· ∈ s) (fun i _ => u i) x xs #align set.subset_bUnion_of_mem Set.subset_biUnion_of_mem /-- A specialization of `iInter₂_subset`. -/ theorem biInter_subset_of_mem {s : Set α} {t : α → Set β} {x : α} (xs : x ∈ s) : ⋂ x ∈ s, t x ⊆ t x := iInter₂_subset x xs #align set.bInter_subset_of_mem Set.biInter_subset_of_mem theorem biUnion_subset_biUnion_left {s s' : Set α} {t : α → Set β} (h : s ⊆ s') : ⋃ x ∈ s, t x ⊆ ⋃ x ∈ s', t x := iUnion₂_subset fun _ hx => subset_biUnion_of_mem <| h hx #align set.bUnion_subset_bUnion_left Set.biUnion_subset_biUnion_left theorem biInter_subset_biInter_left {s s' : Set α} {t : α → Set β} (h : s' ⊆ s) : ⋂ x ∈ s, t x ⊆ ⋂ x ∈ s', t x := subset_iInter₂ fun _ hx => biInter_subset_of_mem <| h hx #align set.bInter_subset_bInter_left Set.biInter_subset_biInter_left theorem biUnion_mono {s s' : Set α} {t t' : α → Set β} (hs : s' ⊆ s) (h : ∀ x ∈ s, t x ⊆ t' x) : ⋃ x ∈ s', t x ⊆ ⋃ x ∈ s, t' x := (biUnion_subset_biUnion_left hs).trans <| iUnion₂_mono h #align set.bUnion_mono Set.biUnion_mono theorem biInter_mono {s s' : Set α} {t t' : α → Set β} (hs : s ⊆ s') (h : ∀ x ∈ s, t x ⊆ t' x) : ⋂ x ∈ s', t x ⊆ ⋂ x ∈ s, t' x := (biInter_subset_biInter_left hs).trans <| iInter₂_mono h #align set.bInter_mono Set.biInter_mono theorem biUnion_eq_iUnion (s : Set α) (t : ∀ x ∈ s, Set β) : ⋃ x ∈ s, t x ‹_› = ⋃ x : s, t x x.2 := iSup_subtype' #align set.bUnion_eq_Union Set.biUnion_eq_iUnion theorem biInter_eq_iInter (s : Set α) (t : ∀ x ∈ s, Set β) : ⋂ x ∈ s, t x ‹_› = ⋂ x : s, t x x.2 := iInf_subtype' #align set.bInter_eq_Inter Set.biInter_eq_iInter theorem iUnion_subtype (p : α → Prop) (s : { x // p x } → Set β) : ⋃ x : { x // p x }, s x = ⋃ (x) (hx : p x), s ⟨x, hx⟩ := iSup_subtype #align set.Union_subtype Set.iUnion_subtype theorem iInter_subtype (p : α → Prop) (s : { x // p x } → Set β) : ⋂ x : { x // p x }, s x = ⋂ (x) (hx : p x), s ⟨x, hx⟩ := iInf_subtype #align set.Inter_subtype Set.iInter_subtype theorem biInter_empty (u : α → Set β) : ⋂ x ∈ (∅ : Set α), u x = univ := iInf_emptyset #align set.bInter_empty Set.biInter_empty theorem biInter_univ (u : α → Set β) : ⋂ x ∈ @univ α, u x = ⋂ x, u x := iInf_univ #align set.bInter_univ Set.biInter_univ @[simp] theorem biUnion_self (s : Set α) : ⋃ x ∈ s, s = s := Subset.antisymm (iUnion₂_subset fun _ _ => Subset.refl s) fun _ hx => mem_biUnion hx hx #align set.bUnion_self Set.biUnion_self @[simp] theorem iUnion_nonempty_self (s : Set α) : ⋃ _ : s.Nonempty, s = s := by rw [iUnion_nonempty_index, biUnion_self] #align set.Union_nonempty_self Set.iUnion_nonempty_self theorem biInter_singleton (a : α) (s : α → Set β) : ⋂ x ∈ ({a} : Set α), s x = s a := iInf_singleton #align set.bInter_singleton Set.biInter_singleton theorem biInter_union (s t : Set α) (u : α → Set β) : ⋂ x ∈ s ∪ t, u x = (⋂ x ∈ s, u x) ∩ ⋂ x ∈ t, u x := iInf_union #align set.bInter_union Set.biInter_union theorem biInter_insert (a : α) (s : Set α) (t : α → Set β) : ⋂ x ∈ insert a s, t x = t a ∩ ⋂ x ∈ s, t x := by simp #align set.bInter_insert Set.biInter_insert theorem biInter_pair (a b : α) (s : α → Set β) : ⋂ x ∈ ({a, b} : Set α), s x = s a ∩ s b := by rw [biInter_insert, biInter_singleton] #align set.bInter_pair Set.biInter_pair theorem biInter_inter {ι α : Type*} {s : Set ι} (hs : s.Nonempty) (f : ι → Set α) (t : Set α) : ⋂ i ∈ s, f i ∩ t = (⋂ i ∈ s, f i) ∩ t := by haveI : Nonempty s := hs.to_subtype simp [biInter_eq_iInter, ← iInter_inter] #align set.bInter_inter Set.biInter_inter theorem inter_biInter {ι α : Type*} {s : Set ι} (hs : s.Nonempty) (f : ι → Set α) (t : Set α) : ⋂ i ∈ s, t ∩ f i = t ∩ ⋂ i ∈ s, f i := by rw [inter_comm, ← biInter_inter hs] simp [inter_comm] #align set.inter_bInter Set.inter_biInter theorem biUnion_empty (s : α → Set β) : ⋃ x ∈ (∅ : Set α), s x = ∅ := iSup_emptyset #align set.bUnion_empty Set.biUnion_empty theorem biUnion_univ (s : α → Set β) : ⋃ x ∈ @univ α, s x = ⋃ x, s x := iSup_univ #align set.bUnion_univ Set.biUnion_univ theorem biUnion_singleton (a : α) (s : α → Set β) : ⋃ x ∈ ({a} : Set α), s x = s a := iSup_singleton #align set.bUnion_singleton Set.biUnion_singleton @[simp] theorem biUnion_of_singleton (s : Set α) : ⋃ x ∈ s, {x} = s := ext <| by simp #align set.bUnion_of_singleton Set.biUnion_of_singleton theorem biUnion_union (s t : Set α) (u : α → Set β) : ⋃ x ∈ s ∪ t, u x = (⋃ x ∈ s, u x) ∪ ⋃ x ∈ t, u x := iSup_union #align set.bUnion_union Set.biUnion_union @[simp] theorem iUnion_coe_set {α β : Type*} (s : Set α) (f : s → Set β) : ⋃ i, f i = ⋃ i ∈ s, f ⟨i, ‹i ∈ s›⟩ := iUnion_subtype _ _ #align set.Union_coe_set Set.iUnion_coe_set @[simp] theorem iInter_coe_set {α β : Type*} (s : Set α) (f : s → Set β) : ⋂ i, f i = ⋂ i ∈ s, f ⟨i, ‹i ∈ s›⟩ := iInter_subtype _ _ #align set.Inter_coe_set Set.iInter_coe_set theorem biUnion_insert (a : α) (s : Set α) (t : α → Set β) : ⋃ x ∈ insert a s, t x = t a ∪ ⋃ x ∈ s, t x := by simp #align set.bUnion_insert Set.biUnion_insert theorem biUnion_pair (a b : α) (s : α → Set β) : ⋃ x ∈ ({a, b} : Set α), s x = s a ∪ s b := by
simp
theorem biUnion_pair (a b : α) (s : α → Set β) : ⋃ x ∈ ({a, b} : Set α), s x = s a ∪ s b := by
Mathlib.Data.Set.Lattice.1115_0.5mONj49h3SYSDwc
theorem biUnion_pair (a b : α) (s : α → Set β) : ⋃ x ∈ ({a, b} : Set α), s x = s a ∪ s b
Mathlib_Data_Set_Lattice